$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

시간 연속성을 고려한 딥러닝 기반 레이더 강우예측
Radar rainfall prediction based on deep learning considering temporal consistency 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.54 no.5, 2021년, pp.301 - 309  

신홍준 (한국수력원자력 수력처) ,  윤성심 (한국건설기술연구원 국토보전연구본부) ,  최재민 (가천대학교 설비소방공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 시계열 순서의 의미가 희석될 수 있는 기존의 U-net 기반 딥러닝 강우예측 모델의 성능을 개선하고자 하였다. 이를 위해서 데이터의 연속성을 고려한 ConvLSTM2D U-Net 신경망 구조를 갖는 모델을 적용하고, RainNet 모델 및 외삽 기반의 이류모델을 이용하여 예측정확도 개선 정도를 평가하였다. 또한 신경망 기반 모델 학습과정에서의 불확실성을 개선하기 위해 단일 모델뿐만 아니라 10개의 앙상블 모델로 학습을 수행하였다. 학습된 신경망 강우예측모델은 현재를 기준으로 과거 30분 전까지의 연속된 4개의 자료를 이용하여 10분 선행 예측자료를 생성하는데 최적화되었다. 최적화된 딥러닝 강우예측모델을 이용하여 강우예측을 수행한 결과, ConvLSTM2D U-Net을 사용하였을 때 예측 오차의 크기가 가장 작고, 강우 이동 위치를 상대적으로 정확히 구현하였다. 특히, 앙상블 ConvLSTM2D U-Net이 타 예측모델에 비해 높은 CSI와 낮은 MAE를 보이며, 상대적으로 정확하게 강우를 예측하였으며, 좁은 오차범위로 안정적인 예측성능을 보여주었다. 다만, 특정 지점만을 대상으로 한 예측성능은 전체 강우 영역에 대한 예측성능에 비해 낮게 나타나, 상세한 영역의 강우예측에 대한 딥러닝 강우예측모델의 한계도 확인하였다. 본 연구를 통해 시간의 변화를 고려하기 위한 ConvLSTM2D U-Net 신경망 구조가 예측정확도를 높일 수 있었으나, 여전히 강한 강우영역이나 상세한 강우예측에는 공간 평활로 인한 합성곱 신경망 모델의 한계가 있음을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the...

주제어

표/그림 (11)

참고문헌 (13)

  1. Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J. (2019). Machine learning for precipitation nowcasting from radar images. accessed 28 January 2020, . 

  2. Ayzel, G., Scheffer, T., and Heistermann, M. (2020). "RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting." Geoscientific Model Development, Vol. 13, pp. 2631-2644. 

  3. Kingma, D.P., and Ba, J. (2015). A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 79 May 2015, accessed 10 June 2020 . 

  4. Nakakita, E., Ikebuchi, S., Nakamura, T., Kanmuri, M., Okuda, M., Yamaji, A., and Takasao T. (1996). "Short-term rainfall prediction method using a volume scanning radar and GPV data from numerical weather prediction." Journal of Geophysical Research, Vol. 101, No. D21, pp. 26181-26197. 

  5. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat. (2019). "Deep learning and process understanding for data-driven Earth system science." Nature, 566, pp. 195-204. doi: 10.1038/s41586-019-0912-1 

  6. Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., and Woo, W. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting, accessed 6 May 2021, . 

  7. Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung D., Wong, W., and Woo, W. (2017) "Deep learning for precipitation nowcasting: A benchmark and a new model." 31st Conference on Neural Information Processing Systems, NIPS, Long Beach, CA, U.S. 

  8. Shiiba, M., Takasao, T., and Nakakita, E. (1984). "Investigation of short-term rainfall prediction method by a translation model." Proceeding Japanese Conference on Hydraulics, JSCE, Vol. 28, pp. 423-428. 

  9. Shin, H.J., and Yoon, S.S. (2021). "AI Competition for rain prediction of Hydropower dam using public data." Water for Future, Vol. 54, No. 1, pp. 87-92. 

  10. Sugimoto, S., Nakakita E., and Ikebuchi, S. (2001). "A stochastic approach to short-term rainfall prediction using a physically based conceptual rainfall model." Journal of Hydrology, Vol. 242, pp. 137-155. 

  11. Tran, Q.K., and Song, S.K. (2019). "Computer vision in precipitation nowcasting: Applying image quality assessment metrics for training deep neural networks." Atmosphere, Vol. 10, No. 5, doi: 10.3390/atmos10050244 

  12. Yoon, S.S., and Bae, D.H. (2010). "The applicability assessment of the short-term rainfall forecasting using translation model." Journal of Korea Water Resources Association, Vol. 43, No. 8, pp. 695-707. 

  13. Yoon, S.S., Park, H.S., and Shin, H.J. (2020). "Very short-term rainfall prediction based on radar image learning using deep neural network." Journal of Korea Water Resources Association, Vol. 53, No. 12, pp. 1159-1172. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로