$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향
Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel 원문보기

Corrosion science and technology, v.20 no.3, 2021년, pp.158 - 168  

임연수 (한국원자력연구원 재료안전기술개발부) ,  김동진 (한국원자력연구원 재료안전기술개발부) ,  황성식 (한국원자력연구원 재료안전기술개발부) ,  최민재 (한국원자력연구원 재료안전기술개발부) ,  조성환 (한국원자력연구원 재료안전기술개발부)

Abstract AI-Helper 아이콘AI-Helper

Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearl...

주제어

표/그림 (12)

참고문헌 (30)

  1. J. McKinley, R. Lott, B. Hall, and K. Kalchik, Proc. of the 16th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, Asheville, North Carolina (2013). 

  2. R. Pathania, R. Carter, and A. Demma, Fontevraud 7, p. 26, Avignon, France (2010). 

  3. S. M. Bruemmer, E. P. Simonen, P. M. Scott, P. L. Andresen, G. S. Was, and J. L. Nelson, Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals, Journal of Nuclear Materials, 274, 299 (1999). Doi: https://doi.org/10.1016/S0022-3115(99)00075-6 

  4. O. K. Chopra and A. S. Rao, A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels, Journal of Nuclear Materials, 409, 235 (2011). Doi: https://doi.org/10.1016/j.jnucmat.2010.12.001 

  5. P. L. Andresen and G. S. Was, A historical perspective on understanding IASCC, Journal of Nuclear Materials, 517, 380 (2019). Doi: https://doi.org/10.1016/j.jnucmat.2019.01.057 

  6. S. J. Zinkle and L. L. Snead, Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations, Scripta Materialia, 143, 154 (2018). https:// doi.org/10.1016/j.scriptamat.2017.06.041 

  7. J. Gan and G. Was, Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: comparison with neutron-irradiated microstructures, Journal of Nuclear Materials, 297, 161 (2001). Doi: https://doi.org/10.1016/ S0022-3115(01)00615-8 

  8. G. S. Was, J. T. Busby, T. Allen, E. A. Kenik, A. Jenssen, S. M. Bruemmer, J. Gan, A. D. Edwards, P. M. Scott, and P. L. Andresen, Emulation of neutron irradiation effects with protons: validation of principle, Journal of Nuclear Materials, 300, 198 (2002). Doi: https://doi.org/10.1016/ S0022-3115(01)00751-6 

  9. B. H. Sencer, G. S. Was, M. Sagisaka, Y. Isobe, G. M. Bond, and F. A. Garner, Proton irradiation emulation of PWR neutron damage microstructures in solution annealed 304 and cold-worked 316 stainless steels, Journal of Nuclear Materials, 323, 18 (2003). Doi: https:// doi.org/10.1016/j.jnucmat.2003.07.007 

  10. K. J. Stephenson and G. S. Was, Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons, Journal of Nuclear Materials, 456, 85 (2015). Doi: https://doi.org/10.1016/j.jnucmat.2014.08.021 

  11. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York (1985). 

  12. D. J. Edwards, E. P. Simonen, and S. M. Bruemmer, Evolution of fine-scale defects in stainless steels neutron-irradiated at 275℃, Journal of Nuclear Materials, 317, 13 (2003). Doi: https://doi.org/10.1016/S0022-3115(03)00002-3 

  13. Z. Li, H. Abe, and N. Sekimura, Analysis of Defects Formation and Mobility during Ion Irradiation by Coherent Precipitates, Materials Transactions, 47, 259 (2006). Doi: https://doi.org/10.2320/matertrans.47.259 

  14. D. Chen, K. Murakami, K. Dohi, K. Nishida, N. Soneda, Z. Li, L. Liu, and N. Sekimura, Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition, Nuclear Instruments and Methods in Physics Research B, 365, 503 (2015). Doi: https://doi.org/10.1016/j.nimb.2015.08.029 

  15. L. Shao, C.-C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen, B. H. Sencer, and F. A. Garner, Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions, Journal of Nuclear Materials, 453, 176 (2014). Doi: https://doi.org/10.1016/ j.jnucmat.2014.06.002 

  16. C. Zheng and D. Kaoumi, Radiation-induced swelling and radiation-induced segregation & precipitation in dual beam irradiated Ferritic/Martensitic HT9 steel, Materials Characterization, 134, 152 (2017). Doi: https://doi.org/10.1016/j.matchar.2017.10.019 

  17. R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, On the use of SRIM for computing radiation damage exposure, Nuclear Instruments and Methods Physics Research B, 310, 75 (2013). Doi: https://doi.org/10.1016/j.nimb.2013.05.008 

  18. R. E. Schramm and R. P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, 316 SS stacking fault energy, Metallurgical Transactions A, 6, 1345 (1975). Doi: https://doi.org/10.1007/BF02641927 

  19. P. J. Brofman and G. S. Ansell, On the Effect of Carbon on the Stacking Fault Energy of Austenitic Stainless Steels, Metallurgical Transactions A, 9, 879 (1978). Doi: https://doi.org/10.1007/BF02649799 

  20. S. J. Zinkle, Radiation-Induced Effects on Microstructure, in: R.J.M. Konings (ed.), Comprehensive Nuclear Materials, Vol. 1, Elsevier, Amsterdam (2012). 

  21. J.-J. Kai and R. D. Lee, Effects of proton irradiation on the microstructural and microchemical evolution of Inconel 600 alloy, Journal of Nuclear Materials, 207, 286 (1993). Doi: https://doi.org/10.1016/0022-3115(93)90271-Y 

  22. Z. Jiao, J. T. Busby, and G. S. Was, Deformation microstructure of proton-irradiated stainless steels, Journal of Nuclear Materials, 361, 218 (2007). Doi: https://doi.org/10.1016/j.jnucmat.2006.12.012 

  23. M. Meisnar, A. Vilalta-Clemente, M. Moody, K. Arioka, and S. Lozano-Perez, A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water, Acta Materialia, 114, 15 (2016). Doi: https://doi.org/10.1016/j.actamat.2016.05.010 

  24. K. Kruska, S. Lozano-Perez, D. W. Saxey, T. Terachi, T. Yamada, and G. D. W. Smith, Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels, Corrosion Science, 63, 225 (2012). Doi: https:// doi.org/10.1016/j.corsci.2012.06.030 

  25. Y. S. Lim, S.W. Kim, S. S. Hwang, H. P. Kim, and C. Jang, Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment, Corrosion Science, 108, 125 (2016). Doi: https://doi.org/10.1016/ j.corsci.2016.02.040 

  26. R. C. Newman and F. Scenini, Another Way to Think About the Critical Oxide Volume Fraction for the Internal-to-External Oxidation Transition?, Corrosion, 64, 721 (2008). Doi: https://doi.org/10.5006/1.3278509 

  27. S. M. Bruemmer, E. P. Simonen, P. M. Scott, P. L. Andresen, G. S. Wa2011s, and J. L. Nelson, Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals, Journal of Nuclear Materials, 274, 299 (1999). Doi: https://doi.org/10.1016/S0022-3115(99)00075-6 

  28. Y. S. Lim, S. S. Hwang, D. J. Kim, M. J. Choi, and J. Y. Lee, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, May 23-24, Korea (2019). 

  29. V. Kain, R. C. Prasad, and P. K. De, Testing Sensitization and Predicting Susceptibility to Intergranular Corrosion and Intergranular Stress Corrosion Cracking in Austenitic Stainless Steels, Corrosion, 58, 15 (2002). Doi: https://doi.org/10.5006/1.3277301 

  30. T. Fujii, R. Yamakawa, K. Tohgo, and Y. Shimamura, Analysis of the early stage of stress corrosion cracking in austenitic stainless steel by EBSD and XRD, Materials Characterization, 172, 110882 (2021). Doi: https:// doi.org/10.1016/j.matchar.2021.110882 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로