$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

신경병증성 통증의 처리 과정에 있어 중추신경계의 가소성 변화 비교
Comparisons of the Plastic Changes in the Central Nervous System in the Processing of Neuropathic Pain 원문보기

감성과학 = Science of emotion & sensibility, v.24 no.2, 2021년, pp.39 - 48  

권민지 (경일대학교 간호학과)

초록
AI-Helper 아이콘AI-Helper

국제통증연구학회(IASP)에 따르면, 신경병증성 통증은 정상 조건에서 중추신경계에 유해한 정보를 전달하는 신경계 기능 장애로 특징 지워진다. 이런 통증은 말초 혹은 중추 신경계에 확인 가능한 병변이 있는 질환과 어떠한 신경에도 병변이 없는 상태에서 발생하는 상황으로 나누어 볼 수 있다. 두 가지 상황 모두 장기적이고 만성적인 변화과정을 겪게 되며, 결과적으로 신경계가 부적절하게 적응하여 치유되기 어려운 만성통증 증후군으로 발전할 수 있다. 그러나 이러한 통증 치료는 진단에서부터 치료까지의 과정이 어려운 탓에 현재까지도 특별한 해결방안이 부족한 실정이다. 최근 자기공명영상(fMRI), 양전자방출단층촬영법(PET), 광영상(optical imaging) 등 영상분석기술이 발달함에 따라 통증을 유발할 수 있는 유해 자극에 대한 중추신경계의 반응을 영상화하는 연구가 증가하고 있다. 이러한 영상 기법들을 통해 통증을 해석하고 처리하는 뇌 영역에서 시냅스가소성 변화가 일어나고 있음을 확인하였으며, 신경병증성 통증을 비롯한 만성통증과 학습과의 상호 작용을 이해하는 데 많은 도움을 주고 있다. 본 연구는 병리적 통증의 기전과 통증 자극에 따른 뇌의 구조적, 기능적 변화에 대해 최근까지 밝혀진 연구들을 소개하고자 한다. 만성적 통증의 정의와 발생기전을 되짚고 새로운 연구 동향을 살펴보는 것은 통증을 완화할 수 있는 방안을 강구하는 데 도움이 될 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

According to International Associating for the Study of Pain (IASP) definition, neuropathic pain is a disorder characterized by dysfunction of the nervous system that, under normal conditions, mediates virulent information to the central nervous system (CNS). This pain can be divided into a disease ...

주제어

참고문헌 (56)

  1. American Pain Society Quality of Care Committee. (1995). Quality improvement guidelines for the threatment of acute pain and cancer pain, JAMA, 274(23), 1874-1880. DOI: 10.1001/jama.1995.03530230060032 

  2. Bird, G. C., Lash, L. L., Han, J. S., Zou, X., Willis, W. D., & Neugebauer, V. (2005). Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurons. Journal of Physiology, 564(3), 907-921. 

  3. Brennan, F. (2015). The US Congressional "Decade on Pain Control and Research" 2001-2011: A Review. Journal of Pharmaceutical Care in Pain & Symptom Control, 29(3), 212-27. 

  4. Brooks, J., & Tracey, I. (2005). From nociception to pain perception: inaging the spinal and supraspinal pathways. Journal of Anatomy and Physiology, 207(1), 19-33. DOI:10.1111/j.1469-7580.2005.00428.x 

  5. Casey, K. L. (1999). Forebrain mechanisms of nociception and pain: Analysis through imaging. Proceedings of the National Academy of Science of the United States of America, 96(14), 7668-7674. 

  6. Cho, S. H., Ahn, Y. W., Ok, S. M., Huh, J. Y., Ko, M. Y., & Jeong, S. H. (2011). Pharmacotherapy in neuropathic pains: Evidence-based approach. Journal of Oral Medicine and Pain, 36(2), 139-146. 

  7. Choi, Y. J., & Yoon, S. Y. (2014). Neuroaesthetics: A concise review of the evidence aimed at aesthetically sensible design. Science of Emotion & Sensibility, 17(2), 44-54. 

  8. Craig, A. D., Chen, K., Bandy, D., & Reiman, E. M. (2000). Thermosensory activation of insular cortex. Nature Neuroscience, 3(2), 184-190. 

  9. Craig, A. D. (2011). Significance of the insula for the evolution of human awareness of feelings from the body. Annals of the New York Academy of Sciences, 1225, 72-82. 

  10. Craig, A. D. (2014). Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. Journal of Comparative Neurology, 522(1), 36-63. 

  11. Dedosterd, I., & Woolf C. J. (2000). Spared nerve injury: An animal model of persistent peripheral neuroapthic pain. Pain, 87, 149-158. 

  12. Dzau, V. J., & Pizzo, P. A. (2014). Relieving pain in America:Insights from an Institute of Medicine Committee. Journal of the American Medical Association, 312, 1507-1508. 

  13. Fenton, B. W., Shih, E., & Zolton, J. (2015). The neurobiology of pain perception in normal and persistent pain. Pain Management, 5(4), 297-317. 

  14. Gaskin, D. J., & Richard, P. (2012). The economic costs of pain in the United States. Journal of Pain, 13, 715-724. DOI:10.1016/j.jpain.2012.03.009 

  15. Ghaderi, F., Banakar, Shahin., & Rostami, S. (2013). Effect of pre-cooling injection site on pain perception in pediatric dentistry: "A randomized clinical trial". Dental Research Journal, 10(6), 790-794. 

  16. Han, J., Kwon, M., Cha, M., Tanioka, M., Hong, S. K., Bai, S. J., & Lee, B. H. (2015). Plasticity-related PKM zeta signaling in the insular cortex is involved in the modulation of neuropathic pain after nerve injury. Neural Plasticity, 2015, 601767. 

  17. Herr, K., Coyne, P., McCaffery, M., Manworren, R., & Merkel, S. (2011). Pain assessment in the patient unable to self-report: Position statement with clinical practice recommendations. Pain Management Nursing, 12(4), 230-250. 

  18. Ingvar, M. (1999). Pain and functional imaging. Philosophical Transactions of the Royal Society of London. Series B, Biological Science, 354, 1347-58. 

  19. Jett, M. F., McGuirk, J., Waligora, D., & Hunter, J. C. (1997). The effects of mexiletine, desipramine and fluoxetine in rat models involving central sensitization. Pain, 69, 161-169. 

  20. Johansen, J. P., & Fields, H. L. (2004). Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nature Neuroscience, 7(4), 398-403. 

  21. Kaang, B. K. (2001). Memory and Synaptic Plasticity. Korean Journal of Brain Science and Technology, 1(1), 13-24. 

  22. Khoromi, S., Cuil L., Nackers, L., & Max, MB. (2007). Morphine, nortriptyline and their combination vs. placebo in patients with chronic lumbar root pain. Pain, 130, 65-75. 

  23. Kim, J., & Lee, M. (2013). Validity evidences of VAS pain scale utilizing objective physical activity measures in middle-aged females with low-back pain. Korean Journal of Measurement and Education in Physical and Sport Science, 15(2), 29-39. 

  24. Kim, K., Choi, S., Cha, M., & Lee, B. H. (2020). Effects of mTOR inhibitors on neuropathic pain revealed by optical imaging of the insular cortex in rats. Brain Research, 1733, 146720. 

  25. Kohno, T., Ji, R. R., Ito, N., Allchorne, A. J., Befort, K., Karchewski, L. A., & Woolf, C. J. (2005). Peripheral axonal injury results in reduced mu opioid receptor pre- and post- synaptic action in the spinal cord. Pain, 117(1-2), 77-87. 

  26. Kukkar, A., Bali, A., Singh, N., & Jaggi, A. S. (2013). Implications and mechanisms of action of gabapentin in neuropathic pain. Archives of Pharmacal Research, 36(3), 237-251. 

  27. Kwon, M., Han, J., Kim, U. J., Cha, M., Um, S. W., Bai, S. J., Hong, S. K., & Lee, B. H. (2017). Inhibition of Mammalian Target of Rapamycin (mTOR) signaling in the insular cortex alleviates neuropathic pain after peripheral nerve injury. (2017). Frontiers in Moelcular Neuroscience, 10, 79. 

  28. Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: A generator of pain hypersensitivity by central neural plasticity. Journal of Pain, 10(9), 895-926. 

  29. Lee, B. H., Won, R., Baik, E. J., Lee, S. H., & Moon, C. H. (2000). An animal model of neuropathic pain employing injury to the sciatic nerve branches. Neuroreport, 11(4), 657-661. 

  30. Lee, K. K. (2008). Psychopharmacological treatment for chronic pain. Clinical Psychopharmacology and Neuroscience, 19(2), 77-84. 

  31. Lee, Y. (2002). Neuropathic pain. Inje Medical Journal, 23(5), 171-174. 

  32. Li, K. W., Yu, Y. P., Zhou, C., Kim, D. S., Lin, B., Sharp, K., Steward, O., & Luo, Z. D. (2014). Calcium channel alpha2delta1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis. Journal of Biological Chemistry, 289(10), 7025-37. 

  33. Li, X. Y., Ko, H. G., Chen, T., Descalzi, G., Koga, K., Wang, H., Kim, S. S., Shang, Y., Kwak, C., Park, S. W., Shim, J., Lee, K., Collingridge, G. L., Kaang, B. K., & Zhuo, M. (2010). Alleviatiting neuropathic pain hypersensitiviy by inhibiting PKM zeta in the anterior cingulate cortex. Science, 330(6009), 1400-1404. 

  34. Lutz, B. M., Nia, S., Xiong, M., Tao, Y. X., & Bekker, A. (2015). mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia. Molecular Pain, 11, 32. 

  35. MacFarlane, B. V., Wright, A., O'Callaghan, J., & Benson, H. A. (1997). Chronic neuropathic pain and its control by drugs. Pharmacology & Therapeutics, 75(1), 1-19. DOI: 10.1016/s0163-7258(97)00019-3. 

  36. Mackey, S., & Kao, M. -C. (2019). Managing twin crises in chronic pain and prescription opioids. British Medical Journal, 364, I917. 

  37. McQuay, H., Carroll, D., Jadad, A. R., Wiffen, P., & Moore, A. (1995). Anticonvulsant drugs for management of pain: A systemic review. British Medical Journal, 311, 1047-1052. 

  38. Merskey, H., Bogduk, N. (1994). Classification of chronic pain: descriptions of chronic pain syndromes and definition of pain terms 2nd. Seattle, Wash: IASP Press. 

  39. Minn, Y. K., & Kim, S. M. (2008). Diagnosis and treatment of neuropathic pain. Journal of the Korean Medical Association, 51(12), 1139-1148. 

  40. Mutso, A. A., Radzicki, D., Baliki, M. N., Huang, L., Banisadr, G., Centeno, M. V., Radulovic, J., Martina, M., Miller, R. J., & Apkarian, A. V. (2012) Abnormalities in hippocampal functioning with persistent pain. Journal of Neuroscience, 32(17), 5747-5756. 

  41. Narita, M., Nakamura, A., Ozaki, M., Imai, S., Miyoshi, K., Suzuki, M., & Suzuki, T. (2008). Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: Evidence for less sensitivity to morphine. Neuropsychopharmacology, 33(5), 1097-1112. 

  42. Peyron, R., Larrea, L. G., Gregoire, M. C., Convers, P., Richard, A., Lavenne, F., Barral, F. G., Mauguiere, F., Michel, D., & Laurent, B. (2000). Parietal and cingulate process in central pain. a combined postiron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain, 84(1), 77-87. 

  43. Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. a review and meta-analysis. Clinical Neurophysiology, 30, 263-88. 

  44. Qu, C., King, T., Okun, A., Lai, J., Fields, H.L., & Porreca, F. (2011). Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain, 152(7), 1641-1648. 

  45. Samineni, V. K., Prenkumar, L. S., & Faingold, C. L. (2017). Neuropathic pain-induced enhancement of spontaneous and pain-evoked neuronal activity in the periaqueductal gray that is attenuated by gabapentin. Pain, 158(7), 1241-1253. 

  46. Scholz, J., & Woolf, C. J. (2007). The neuropathic pain triad: Neuron, immune cells and glia. Nature Neuroscience, 10, 1361-1368. 

  47. Schweinhardt, P., Glynn, C., Brooks, J., McQuay, H., Jack, T., Chessell, I., Bountra, C., & Tracey, I. (2006). An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage, 32, 256-265. 

  48. Seltzer, Z., Dubner, R., & Shir, Y. (1990). A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 43, 205-218. 

  49. Sirianni, J., Ibrahim, M., & Patwardhan, A. (2015). Chronic pain syndromes, mechanisms, and current treatments. Progress in Molecular Biology and Translational Science, 131, 565-611. 

  50. Tabata, M., Terayama, R., Maruhama, K., lida, S., & Sugimoto, T. (2018). Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury. International Journal of Neuroscience, 128(3), 208-218. 

  51. Thacker, M. A., Clark, A. K., Marchand, F., & McMahon S. B. (2007). Pathophysiology of peripheral neuropathic pain: Immune cells and molecules. Anesthesia and Analgesia, 105(3), 838-47. 

  52. Tsuda, M., Koga, K., Chen, T., & Zhuo, M. (2017). Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. Journal of Neurochemistry, 141(4), 486-498. 

  53. Um, S. W., Kim, M. J., Leem, J. W., Bai, S. J., & Lee, B. H. (2019). Pain-relieving effects of mTOR inhibitor in the anterior cingulate cortex of neuropathic rats. Molecular Neurobiology, 56, 2482-2494. 

  54. Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368(15), 1388-1397. 

  55. Williams, A. C. De. C., & Craig, K. D. (2016). Updating the definition of pain. Pain, 157(11), 2420-2423. 

  56. Yang, G., Pan, F., & Gan, W. -B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 17, 462(7275), 920-924. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로