$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

SIR 모형을 이용한 한국의 코로나19 확산에 대한 개입 효과 분석
Intervention analysis for spread of COVID-19 in South Korea using SIR model 원문보기

응용통계연구 = The Korean journal of applied statistics, v.34 no.3, 2021년, pp.477 - 489  

조수민 (성균관대학교 통계학과) ,  김재직 (성균관대학교 통계학과)

초록
AI-Helper 아이콘AI-Helper

코로나19 바이러스는 2020년에 전세계적으로 심각하게 확산되었고, 우리의 일상생활 전체에 상당한 영향을 미치고 있다. 현재 전세계는 이 유행병 사태 아래에 여전히 있고 한국 또한 이 상황에 대해 예외가 아니다. 이 유행병 기간동안 한국에서는 이 바이러스 확산을 방지하기 위한 또는 가속화시킨 몇 가지 사건들이 있었다. 감염병에 대한 방역 정책을 세우기 위해 이러한 사건들의 감염병 확산에 대한 개입 효과를 조사하는 것은 매우 중요하다. SIR 모형은 미분방정식을 통해 감염병 확산의 동적 행태를 파악하기 위해 자주 사용되는 방법이다. 그러나, SIR 모형은 관찰된 데이터의 불확실성을 고려하지 않는 결정적인 모형이다. 따라서 SIR 모형에서 데이터의 불확실성을 고려하기 위해 베이지안 접근법이 사용될 수 있고, 이러한 접근법은 SIR 모형에서 감염률에 대한 시간변이함수에 근거한 개입효과분석을 가능하게 한다. 본 연구에서는 베이지안 접근법에 근거한 확률적 SIR 모형을 이용하여 한국에서의 코로나19 바이러스의 확산 추세를 설명하고 그러한 사건들에 대한 개입효과를 조사한다.

Abstract AI-Helper 아이콘AI-Helper

COVID-19 has spread seriously around the world in 2020 and it is still significantly affecting our whole daily life. Currently, the whole world is still undergoing the pandemic and South Korea is no exception to it. During the pandemic, South Korea had several events that prevented or accelerated it...

주제어

표/그림 (10)

참고문헌 (7)

  1. Bailey NTJ (1975). The Mathematical Theory of Infectious Diseases and its Applications(2nd ed), Charles Griffin & Company Ltd, London. 

  2. Dehning J, Zierenberg J, Spitzner FP, Wibral M, Neto JP, Wilczek M, and Priesemann V (2020). Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions, Science, 369. 

  3. He S, Tang S, and Rong L (2020). A discrete stochastic model of the COVID-19 outbreak: Forecast and control, Mathematical Biosciences and Engineering, 17, 2792-2804. 

  4. Kermack WO and McKendrick AG (1927). A contribution to the mathematical theory of epidemics. In Proceedings of the Royal Society A: Mathematical Physical H and Engineering Science, 115, 700-721. 

  5. Kucharski A, Russell T, Diamond C, Liu Y, Edmunds J, Funk S, and Eggo RM (2020). Early dynamics of transmission and control of COVID-19: A mathematical modelling study, The Lancet Infectious Diseases, 20, 553-558. 

  6. Lekone P and Finkenstadt B (2006). Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics, 62, 1170-1177. 

  7. Mode CJ and Sleeman CK (2000). Stochastic Processes in Epidemiology: HIV/AIDS, Other Infectious Diseases, and Computers, River Edge, Singapore. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로