$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정
Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.54 no.7, 2021년, pp.485 - 493  

신문주 (제주특별자치도개발공사 수자원연구팀) ,  문수형 (제주특별자치도개발공사 수자원연구팀) ,  문덕철 (제주특별자치도개발공사 수자원연구팀) ,  류호윤 (제주특별자치도개발공사 수자원연구팀) ,  강경구 (제주특별자치도개발공사 품질연구본부)

초록
AI-Helper 아이콘AI-Helper

지하수는 지표수와 함께 용수로 사용가능한 중요한 수자원이며 특히 섬 지역의 경우 전체 수자원 중 지하수의 이용 비율이 상대적으로 높기 때문에 안정적인 이용을 위해 지하수위 변동성에 대한 연구는 필수적이다. 지하수위 변동성의 예측 및 분석을 위해 인공지능 모델을 활용한 연구들이 지속적으로 증가하고 있으나 지하수위 예측결과의 적절성을 판단할 수 있는 평가기준을 제시한 연구는 충분하지 않다. 본 연구에서는 허용가능한 지하수위 예측오차의 범위를 제시하기 위해 과거 20년 동안 전 세계 다양한 지역을 대상으로 인공지능 모델을 활용하여 지하수위를 예측한 연구결과들을 종합적으로 분석하였다. 그 결과 관측지하수위의 변동성이 커질수록 인공지능 모델에 의한 지하수위 예측오차는 증가하였다. 따라서 관측지하수위 최대변동폭과 예측오차 간의 상관성과 기존 연구들에서 제시한 평가지수들을 고려하여 평가기준을 산정하였으며, 인공지능 모델에 의한 지하수위 예측결과의 적절한 평가기준은 도출된 선형회귀식에 의한 평균제곱근오차 또는 최대오차 이하이거나, NSE ≥ 0.849 또는 R2 ≥ 0.880 이다. 이 허용가능한 오차범위는 인공지능 모델을 활용한 지하수위 예측결과의 적절성 판단을 위한 참고자료로 사용할 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial i...

주제어

표/그림 (3)

참고문헌 (50)

  1. Adamowski, J., and Chan, H.F. (2011). "A wavelet neural network conjunction model for groundwater level forecasting." Journal of Hydrology, Vol. 407, No. 1-4, pp. 28-40. 

  2. Afzaal, H., Farooque, A.A., Abbas, F., Acharya, B., and Esau, T. (2020). "Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning." Water, Vol. 12, No. 1, p. 5. 

  3. Ala-Aho, P., Rossi, P.M., Isokangas, E., and Klove, B. (2015). "Fully integrated surface-subsurface flow modelling of groundwaterlake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging." Journal of Hydrology, Vol. 522, pp. 391-406. 

  4. Barthel, R., and Banzhaf, S. (2016). "Groundwater and surface water interaction at the regional-scale-a review with focus on regional integrated models." Water Resources Management, Vol. 30, No. 1, pp. 1-32. 

  5. Barzegar, R., Fijani, E., Moghaddam, A.A., and Tziritis, E. (2017). "Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models." Science of the Total Environment, Vol. 599, pp. 20-31. 

  6. Brunner, P., and Simmons, C.T. (2012). "HydroGeoSphere: A fully integrated, physically based hydrological model." Groundwater, Vol. 50, No. 2, pp. 170-176. 

  7. Chang, F.J., Chang, L.C., Huang, C.W., and Kao, I.F. (2016). "Prediction of monthly regional groundwater levels through hybrid soft-computing techniques." Journal of Hydrology, Vol. 541, pp. 965-976. 

  8. Chen, L.H., Chen, C.T., and Lin, D.W. (2011). "Application of integrated back-propagation network and self-organizing map for groundwater level forecasting." Journal of Water Resources Planning and Management, Vol. 137, No. 4, pp. 352-365. 

  9. Chen, L.H., Chen, C.T., and Pan, Y.G. (2010). "Groundwater level prediction using SOM-RBFN multisite model." Journal of Hydrologic Engineering, Vol. 15, No. 8, pp. 624-631. 

  10. Coulibaly, P., Anctil, F., Aravena, R., and Bobee, B. (2001). "Artificial neural network modeling of water table depth fluctuations." Water Resources Research, Vol. 37, No. 4, pp. 885-896. 

  11. Daliakopoulos, I.N., Coulibaly, P., and Tsanis, I.K. (2005). "Groundwater level forecasting using artificial neural networks." Journal of Hydrology, Vol. 309, No. 1-4, pp. 229-240. 

  12. Gong, Y., Zhang, Y., Lan, S., and Wang, H. (2015). "A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida." Water Resources Management, Vol. 30, No. 1, pp. 375-391. 

  13. He, Z., Zhang, Y., Guo, Q., and Zhao, X. (2014). "Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions." Water Resources Management, Vol. 28, No. 15, pp. 5297-5317. 

  14. Huang, F., Huang, J., Jiang, S.H., and Zhou, C. (2017). "Prediction of groundwater levels using evidence of chaos and support vector machine." Journal of Hydroinformatics, Vol. 19, No. 4, pp. 586-606. 

  15. Jeju Special Self-Governing Province (JSSGP) (2018). Comprehensive water resources management plan in Jeju Island. pp. 1-328. 

  16. Jeong, J., and Park, E. (2019). "Comparative applications of datadriven models representing water table fluctuations." Journal of Hydrology, Vol. 572, pp. 261-273. 

  17. Jha, M.K., and Sahoo, S. (2014). "Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater." Hydrological Processes, Vol. 29, No. 5, pp. 671-691. 

  18. Juan, C., Genxu, W., and Tianxu, M. (2015). "Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model." Journal of Hydrology, Vol. 529, pp. 1211-1220. 

  19. Khalil, B., Broda, S., Adamowski, J., Ozga-Zielinski, B., and Donohoe, A. (2015). "Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models." Hydrogeology Journal, Vol. 23, No. 1, pp. 121-141. 

  20. Kisi, O., and Shiri, J. (2012). "Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations." Hydrology Research, Vol. 43, No. 3, pp. 286-300. 

  21. Krishna, B., Satyaji Rao, Y.R., and Vijaya, T. (2008). "Modelling groundwater levels in an urban coastal aquifer using artificial neural networks." Hydrological Processes: An International Journal, Vol. 22, No. 8, pp. 1180-1188. 

  22. Kumar, D., Roshni, T., Singh, A., Jha, M.K., and Samui, P. (2020). "Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: A comparative study." Earth Science Informatics, Vol. 13, No. 4, pp. 1237-1250. 

  23. Lee, S., Lee, K.K., and Yoon, H. (2018). "Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors." Hydrogeology Journal, Vol. 27, No. 2, pp. 567-579. 

  24. Maxwell, R.M., Condon, L.E., and Kollet, S.J. (2015). "A highresolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3." Geoscientific Model Development, Vol. 8, No. 3, pp. 923-937. 

  25. McDonald, M.G., and Harbaugh, A.W. (1988). A modular threedimensional finite-difference ground-water flow model. Vol. 6. US Geological Survey, VA, U.S. 

  26. Mirzavand, M., Khoshnevisan, B., Shamshirband, S., Kisi, O., Ahmad, R., and Akib, S. (2015). "Evaluating groundwater level fluctuation by support vector regression and neuro-fuzzy methods: A comparative study." Natural Hazards, Vol. 1, No. 1, pp. 1-15. 

  27. Mohanty, S., Jha, M.K., Kumar, A., and Panda, D.K. (2013). "Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in KathajodiSurua Inter-basin of Odisha, India." Journal of Hydrology, Vol. 495, pp. 38-51. 

  28. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. 

  29. Mukherjee, A., and Ramachandran, P. (2018). "Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: Analysis of comparative performances of SVR, ANN and LRM." Journal of Hydrology, Vol. 558, pp. 647-658. 

  30. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. 

  31. Nayak, P.C., Rao, Y.S., and Sudheer, K.P. (2006). "Groundwater level forecasting in a shallow aquifer using artificial neural network approach." Water Resources Management, Vol. 20, No. 1, pp. 77-90. 

  32. Nie, S., Bian, J., Wan, H., Sun, X., and Zhang, B. (2017). "Simulation and uncertainty analysis for groundwater levels using radial basis function neural network and support vector machine models." Journal of Water Supply: Research and Technology- AQUA, Vol. 66, No. 1, pp. 15-24. 

  33. Nourani, V., and Mousavi, S. (2016). "Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method." Journal of Hydrology, Vol. 536, pp. 10-25. 

  34. Rahman, A.S., Hosono, T., Quilty, J.M., Das, J., and Basak, A. (2020). "Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms." Advances in Water Resources, Vol. 141, p. 103595. 

  35. Rajaee, T., Ebrahimi, H., and Nourani, V. (2019). "A review of the artificial intelligence methods in groundwater level modeling." Journal of Hydrology, Vol. 572, pp. 336-351. 

  36. Rakhshandehroo, G.R., Vaghefi, M., and Aghbolaghi, M.A. (2012). "Forecasting groundwater level in Shiraz plain using artificial neural networks." Arabian Journal for Science and Engineering, Vol. 37, No. 7, pp. 1871-1883. 

  37. Sahoo, S., and Jha, M.K. (2013). "Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment." Hydrogeology Journal, Vol. 21, No. 8, pp. 1865-1887. 

  38. Shin, M.J., Moon, S.H., Kang, K.G., Moon, D.C., and Koh, H.J. (2020). "Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network." Hydrology, Vol. 7, No. 3, p. 64. 

  39. Sun, Y., Wendi, D., Kim, D.E., and Liong, S.Y. (2016). "Application of artificial neural networks in groundwater table forecasting-a case study in a Singapore swamp forest." Hydrology and Earth System Sciences, Vol. 20, No. 4. pp. 1405-1412. 

  40. Taormina, R., Chau, K.W., and Sethi, R. (2012). "Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon." Engineering Applications of Artificial Intelligence, Vol. 25, No. 8, pp. 1670-1676. 

  41. Therrien, R. (1992). Three-dimensional analysis of variably saturated flow and solute transport in discretely-fractured porous media. Ph.D. thesis, University of Waterloo, Waterloo, Canada. 

  42. Todd, D.K., and Larry, W.M. (2004). Groundwater hydrology, Third Edition. John Wiley & Sons Inc., Hoboken, NJ, USA, pp. 1-656. 

  43. Wen, X., Feng, Q., Deo, R.C., Wu, M., and Si, J. (2017). "Wavelet analysis-artificial neural network conjunction models for multiscale monthly groundwater level predicting in an arid inland river basin, northwestern China." Hydrology Research, Vol. 48, No. 6, pp. 1710-1729. 

  44. White, J.T., Doherty, J.E., and Hughes, J.D. (2014). "Quantifying the predictive consequences of model error with linear subspace analysis." Water Resources Research, Vol. 50, No. 2, pp. 1152-1173. 

  45. White, J.T., Knowling, M.J., and Moore, C.R. (2020). "Consequences of groundwater-model vertical discretization in risk-based decision-making." Groundwater, Vol. 58, No. 5, pp. 695-709. 

  46. Yang, Z.P., Lu, W.X., Long, Y.Q., and Li, P. (2009). "Application and comparison of two prediction models for groundwater levels: A case study in Western Jilin Province, China." Journal of Arid Environments, Vol. 73, No. 4-5, pp. 487-492. 

  47. Yoon, H., Hyun, Y., Ha, K., Lee, K.K., and Kim, G.B. (2016). "A method to improve the stability and accuracy of ANN-and SVM-based time series models for long-term groundwater level predictions." Computers and Geosciences, Vol. 90, pp. 144-155. 

  48. Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. (2011). "A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer." Journal of Hydrology, Vol. 396, No. 1-2, pp. 128-138. 

  49. Yu, H., Wen, X., Feng, Q., Deo, R.C., Si, J., and Wu, M. (2018). "Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, Northwest China." Water Resources Management, Vol. 32, No. 1, pp. 301-323. 

  50. Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J. (2018). "Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas." Journal of Hydrology, Vol. 561, pp. 918-929. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로