$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성
Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.49 no.3, 2021년, pp.413 - 424  

이수연 (이화여자대학교 환경공학과) ,  이윤영 (이화여자대학교 환경공학과) ,  조경숙 (이화여자대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

식물과 근권미생물을 이용해 토양 오염물질을 제거하는 rhizoremediation의 효율을 높이기 위해서는 오염물질을 제거함과 동시에 식물 생장을 촉진시키는 미생물 자원 개발이 필요하다. 본 연구에서는 중금속 및 유류 복합 오염 토양에서 서식하고 있는 옥수수와 톨페스큐의 근권으로부터 중금속(구리, 카드뮴 및 납) 내성을 가진 근권세균을 순수분리하였고, 식물 생장 촉진능, 중금속 내성능 및 디젤 분해능을 정성적으로 평가하였다. 그 결과 중금속 내성, 식물 생장 촉진 활성 및 디젤 분해능을 가진 6종의 균주를 분리하였다. 옥수수 근권에서 분리한 CuM5와 CdM2 균주는 Cupriavidus sp.로 동정되었다. 톨페스큐 근권에서 분리한 CuT6, CdT2, CdT5 및 PbT3는 각각 Fulvimonas soli, Cupriavidus sp., Novosphingonium sp. 및 Bacillus sp.로 동정되었다. Cupriavidus sp. CuM5와 CdM2는 중금속 내성과 디젤 분해능은 상대적으로 낮았으나, 식물 생장 촉진능이 상대적으로 우수하였다. 6종 중에서 디젤 분해능이 가장 우수한 균주는 Cupriavidus sp. CdT2와 Bacillus sp. PbT3이었다. 특히, Bacillus sp. PbT3는 3종의 중금속에 대해 상대적으로 우수한 내성을 가졌고 식물 생장 촉진능도 우수하였다. 본 연구에서 분리한 근권세균은 유류와 중금속 복합 오염 토양을 정화시키며 식물 생장을 촉진시키는 새로운 미생물 자원으로 활용 가능하다.

Abstract AI-Helper 아이콘AI-Helper

In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, hea...

주제어

표/그림 (4)

참고문헌 (63)

  1. Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, et al. 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262: 127810. 

  2. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Goncalves B, Santos C. 2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 35: 1281-1289. 

  3. Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, et al. 2019. Lead toxicity in plants: Impacts and remediation. J. Environ. Manage. 250: 109557. 

  4. Joo JO, Kim IH, Oh B-K. 2014. Removal of Cupper(II), Zinc(II) in marine environment by heavy metal resistant Desulfovibrio desulfuricans. KSBB J. 29: 139-144. 

  5. Koo S, Cho K. 2007. Characterization of a heavy metal-resistant and plant growth-promoting rhizobacterium, Methylobacterium sp. SY-NiR1. Korean J. Microbiol. Biotechnol. 35: 58-65. 

  6. Benitez E, Melgar R, Nogales R. 2004. Estimating soil resilience to a toxic organic waste by measuring enzyme activities. Soil Biol. Biochem. 36: 1615-1623. 

  7. Wohler, I. 1997. Auxin-indole derivatives in soils determined by a colorimetric method and by high performance liquid chromatography. Microbiol. Res. 152: 399-405. 

  8. Nagarajkumar M, Bhaskaran R, Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159: 73-81. 

  9. Hwang JS, Song HG. 2020. Antifungal activity of Bacillus subtilis isolates against toxigenic fungi. Korean J. Microbiol. 56: 28-35. 

  10. Grobelak A, Kokot P, Swiatek J, Jaskulak M, Rorat A. 2018. Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. J. Ecol. Eng. 19: 150-157. 

  11. Dell'Amico E, Cavalca L, Andreoni V. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol. 52: 153-162. 

  12. Barrado LN. 2018. Isolation and characterisation of endophytes from vitis vinifera. Univ Politecnica Valencia, pp. 1-25. 

  13. Lee YY, Seo Y, Ha M, Lee J, Yang H, Cho KS. 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ. Res. 194: 110606. 

  14. Hajdu R, Slaveykova VI. 2012. Cd and Pb removal from contaminated environment by metal resistant bacterium Cupriavidus metallidurans CH34: Importance of the complexation and competition effects. Environ. Chem. 9: 389-398. 

  15. Lyu Y, Zheng W, Zheng T, Tian Y. 2014. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9: 101438. 

  16. Deng Y, Yang F, Deng C, Yang J, Jia J, Yuan H. 2017. Biodegradation of BTEX aromatics by a haloduric microbial consortium enriched from a sediment of Bohai Sea, China. Appl. Biochem. Biotechnol. 183: 893-905. 

  17. Babu AG, Kim JD, Oh BT. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard Mater. 250: 477-483. 

  18. Jiang C, Sheng X, Qian M, Wang Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164. 

  19. Hong S, Cho K-S. 2007. Effects of plants, rhizobacteria and physicochemical factors on the phytoremediation of contaminated soil. Korean J. Microbiol. Biotechnol. 35: 261-271. 

  20. Oh SD, Ahn BO, Kim MK, Sohn SI, Ryu TH, Cho HS, et al. 2010. Effects of protox herbicide tolerance rice cultivation on microbial community in paddy soil. Korean J. Env. Agric. 32: 95-101. 

  21. Dotaniya ML, Meena VD. 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc. Natl. Acad. Sci. India Sect. B - Biol Sci. 85: 1-12. 

  22. Ashraf R, Ali TA. 2007. Effect of heavy metals on soil microbial community and mung beans seed germination. Pakistan J. Bot. 39: 629. 

  23. Wang L, Wang J, Zhu L, Wang J. 2018. Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses. Environ. Geochem. Health 40: 763-776. 

  24. Kabagale AC, Cornu B, Van Vliet F, Meyer CL, Mergeay M, Simbi JBL, et al. 2010. Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant Soil 334: 461-474. 

  25. Xiao L, Yu Z, Liu H, Tan T, Yao J, Zhang Y, et al. 2020. Effects of Cd and Pb on diversity of microbial community and enzyme activity in soil. Ecotoxicology 29: 551-558. 

  26. Prapagdee B, Watcharamusik A. 2009. Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine. Braz. J. Microbiol. 40: 838-845. 

  27. Estrada-De Los Santos P, Solano-Rodriguez R, Matsumura-Paz LT, Vasquez-Murrieta MS, Martinez-Aguilar L. 2014. Cupriavidus plantarum sp. nov., a plant-associated species. Arch Microbiol. 196: 811-817. 

  28. Liu X, Wei S, Wang F, James EK, Guo X, Zagar C, et al. 2012. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiol. Ecol. 80: 417-426. 

  29. Yang C, Ho YN, Makita R, Inoue C, Chien MF. 2020. Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicol. Environ. Saf. 190: 110075. 

  30. Siripornadulsil S, Siripornadulsil W. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol. Environ. Saf. 94: 94-103. 

  31. Vicentin RP, Santos JV, Labory CRG, Costa AM, Moreira FMS, Alves E. 2018. Tolerance to and Accumulation of Cadmium, Copper, and Zinc by Cupriavidus necator. Rev. Bras. Cienc do Solo. 42: 1-12. 

  32. Siripornadulsil S, Thanwisai L, Siripornadulsil W. 2014. Changes in the proteome of the cadmium-tolerant bacteria Cupriavidus taiwanensis KKU2500-3 in response to cadmium toxicity. Can J. Microbiol. 60: 121-131. 

  33. Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D. 2009. Lead(II) resistance in Cupriavidus metallidurans CH34: Interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 96: 171-182. 

  34. Huang N, Mao J, Hu M, Wang X, Huo M. 2019. Responses to copper stress in the metal-resistant bacterium Cupriavidus gilardii CR3: a whole-transcriptome analysis. J. Basic Microbiol. 59: 446-457. 

  35. Chen WM, Wu CH, James EK, Chang JS. 2008. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J. Hazard Mater. 151: 364-371. 

  36. Minari GD, Saran LM, Constancio MTL, da Silva RC, Rosalen DL, de Melo WJ, et al. 2020. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil. Ecotoxicol. Environ. Saf. 204: 111038. 

  37. Li X, Yan Z, Gu D, Li D, Tao Y, Zhang D, et al. 2019. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. J. Basic Microbiol. 59: 579-590. 

  38. Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y, et al. 2019. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere 234: 769-776. 

  39. Singh P, Kim YJ, Nguyen NL, Hoang VA, Sukweenadhi J, Farh MEA, et al. 2015. Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 107: 749-758. 

  40. Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. 2016. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. Chemosphere 162: 31-39. 

  41. Ledger T, Zuniga A, Kraiser T, Dasencich P, Donoso R, Perez-Pantoja D, et al. 2012. Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie van Leeuwenhoek 101: 713-723. 

  42. Kampfer P, Martin K, McInroy JA, Glaeser SP. 2015. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int. J. Syst. Evol. Microbiol. 65: 195-200. 

  43. Krishnan R, Menon RR, Busse HJ, Tanaka N, Krishnamurthi S, Rameshkumar N. 2017. Novosphingobium pokkalii sp. nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res. Microbiol. 168: 113-121. 

  44. Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T. 2013. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J. Basic Microbiol. 53: 1004-1015. 

  45. Vives-Peris V, Gomez-Cadenas A, Perez-Clemente RM. 2018. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep. 37: 1557-1569. 

  46. Chettri B, Singh AK. 2019. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. Bioresour. Technol. 294: 122190. 

  47. Liu X, Liu M, Chen X, Yang Y, Hou L, Wu S, et al. 2019. Indigenous PAH degraders along the gradient of the Yangtze Estuary of China: Relationships with pollutants and their bioremediation implications. Mar. Pollut. Bull. 142: 419-427. 

  48. Segura A, Udaondo Z, Molina L. 2021. PahT regulates carbon fluxes in Novosphingobium sp. HR1a and influences its survival in soil and rhizospheres. Environ. Microbiol. 23: 2969-2991. 

  49. Rodriguez-Conde S, Molina L, Gonzalez P, Garcia-Puente A, Segura A. 2016. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl. Microbiol. Biotechnol. 100: 10627-10636. 

  50. Ke T, Zhang J, Tao Y, Zhang C, Zhang Y, Xu Y, et al. 2021. Individual and combined application of Cu-tolerant Bacillus spp. enhance the Cu phytoextraction efficiency of perennial ryegrass. Chemosphere 263: 127952. 

  51. Kamaruzzaman MA, Abdullah SRS, Hasan HA, Hassan M, Othman AR, Idris M. 2020. Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus. Biocatal. Agric. Biotechnol. 23: 101456. 

  52. Saharan BS, Verma S. 2014. Potential plant growth promoting activity of Bacillus licheniformis UHI(II)7. Int. J. Microb. Resour. Technol. 2: 22-27. 

  53. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, Elsayed AE, et al. 2021. Role of Bacillus cereus in improving the growth and Phytoextractability of Brassica nigra (L.) K. koch in chromium contaminated soil. Molecules 26: 1569. 

  54. Wang C, Liu Z, Huang Y, Zhang Y, Wang X, Hu Z. 2019. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). Environ. Toxicol. Pharmacol. 72: 103265. 

  55. Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 101: 8599-8605. 

  56. Heidari P, Panico A. 2020. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus sp. Int. J. Environ. Res. Public Health 17: 4059. 

  57. Singh S, Kumar V, Sidhu GK, Datta S, Dhanjal DS, Koul B, et al. 2019. Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatal. Agric. Biotechnol. 17: 665-671. 

  58. Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK. 2013. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 51: 11-17. 

  59. Al-Sharidah A, Richardt A, Golecki JR, Dierstein R, Tadros MH. 2000. Isolation and characterization of two hydrocarbon-degrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol. Res. 155: 157-164. 

  60. Kebria DY, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar MA. 2009. Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int. J. Environ. Sci. Technol. 6: 435-442. 

  61. Patowary K, Saikia RR, Kalita MC, Deka S. 2015. Degradation of polyaromatic hydrocarbons employing biosurfactant-producing Bacillus pumilus KS2. Ann. Microbiol. 65: 225-234. 

  62. Yuniarti E, Dalmacio IF, Paterno ES. 2019. Heavy metal-resistant rhizobacteria from gold mine in Pongkor Indonesiaa and copper mine in Marinduque Philippines. J. ILMU Pertan. 31: 75-88. 

  63. Huang Y, Li L. 2014. Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environ. Res. 86: 277-284. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로