$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

분석조건별 담수어류의 환경 DNA 메타바코딩 효율 비교: 필터, 추출 키트, 프라이머 조합 및 PCR 방법
Efficiency Comparison of Environmental DNA Metabarcoding of Freshwater Fishes according to Filters, Extraction Kits, Primer Sets and PCR Methods 원문보기

생태와 환경 = Korean journal of ecology and environment, v.54 no.3, 2021년, pp.199 - 208  

김근식 (국립생태원 멸종위기종복원센터) ,  김근용 (아쿠아진텍(주)) ,  윤주덕 (국립생태원 멸종위기종복원센터)

초록
AI-Helper 아이콘AI-Helper

메타바코딩을 이용한 환경 DNA 분석은 검출 감도가 높아 어류의 생물다양성 평가 및 멸종위기종의 검출에 유용한 기술이다. 이번 연구는 메타바코딩을 이용해 우리나라 담수어류를 대상으로 높은 검출 효율을 보일 수 있는 적합한 분석방법을 확인하기 위해 4가지 분석조건별, 즉 필터(cellulose nitrate filter, glass fiber filter), 추출 키트(DNeasy® Blood & Tissue Kit, DNeasy® PowerWater Kit), 프라이머 조합(12S rDNA, 16S rDNA) 그리고 PCR 방법(conventional PCR, touchdown PCR)로 나타나는 Operational Taxonomic Units(OTUs) 수와 종 조성을 비교하였다. Glass fiber filter와 DNeasy® Tissue & Blood Kit를 이용해 추출한 시료는 12S rDNA와 16S rDNA 프라이머 조합에서 담수어류 OTUs가 가장 많이 검출되었다. 모든 분석조건 중 프라이머 조합에서만 조기어강(Class Actinopterygii) 평균 OTUs 수에서 통계적으로 유의한 차이를 보였고(Non-parametric Wilcoxon Signed Ranks Test, p=0.005), 담수어류 평균 OTUs 수는 유의하지 않았다. 종 조성 비교 결과 역시 프라이머 조합에서 유의한 차이를 보였고(PERMANOVA, Pseudo-F=6.9489, p=0.006), 나머지 분석조건에서는 유의한 차이를 보이지 않았다. NMDS 분석 결과 종 조성은 유사도 65% 기준에서 프라이머 조합에 따라 묶였고, 16S rDNA 프라이머 세트는 주로 멸종위기종인 모래주사(Microphysogobio koreensis), 꼬치동자개(Pseudogobio brevicorpus)가 기여하였고, 12S rDNA 프라이머 세트는 주로 일반종인 피라미(Zacco platypus), 꺽지(Coreoperca herzi) 등이 기여한 것으로 나타났다. 본 연구는 국내 하천에서 채취한 시료에 대한 메타바코딩을 이용한 종 다양성 분석의 기초정보를 제공한다.

Abstract AI-Helper 아이콘AI-Helper

Environmental DNA (eDNA) metabarcoding is effective method with high detection sensitivity for evaluating fish biodiversity and detecting endangered fish from natural water samples. We compared the richness of operational taxonomic units(OTUs) and composition of freshwater fishes according to filter...

주제어

참고문헌 (52)

  1. Akamatsu, Y., G. Kume, M. Gotou, T. Kono, T. Fujii, R. Inui and Y. Kurita. 2020. Using environmental DNA analyses to assess the occurrence and abundance of the endangered amphidromous fish Plecoglossus altivelis ryukyuensis. Biodiversity Data Journal 8: e39679. https://doi.org/10.3897/bdj.8.e39679 

  2. Akre, T.S., L.D. Parker, E. Ruther, J.E. Maldonado, L. Lemmon and N.R. McInerney. 2019. Concurrent visual encounter sampling validates eDNA selectivity and sensitivity for the endangered wood turtle (Glyptemys insculpta). PLoS ONE 14: e0215586. https://doi.org/10.1371/journal.pone.0215586 

  3. Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2 

  4. Anderson, M.J. 2005. PERMANOVA: a FORTRAN Computer Program for Permutational Multivariate Analysis of Aariance. Department of Statistics, University of Auckland, Auckland. 

  5. Bergman, P.S., G. Schumer, S. Blankenship and E. Campbell. 2016. Detection of adult green sturgeon using environmental DNA analysis. PLoS ONE 11: e0153500. https://doi.org/10.1371/journal.pone.0153500 

  6. Bolyen, E., J.R. Rideout, M.R. Dillon, N.A. Bokulich, C.C. Abnet, G.A. Al-Ghalith, H. Alexander, E.J. Alm, M. Arumugam, F. Asnicar, Y. Bai, J.E. Bisanz, K. Bittinger, A. Brejnrod, C.J. Brislawn, C.T. Brown, B.J. Callahan, A.M. Caraballo-Rodriguez, J. Chase, E.K. Cope, R. Da Silva, C. Diener, P.C. Dorrestein, G.M. Douglas, D.M. Durall, C. Duvallet, C.F. Edwardson, M. Ernst, M. Estaki, J. Fouquier, J.M. Gauglitz, S.M. Gibbons, D.L. Gibson, A. Gonzalez, K. Gorlick, J. Guo, B. Hillmann, S. Holmes, H. Holste, C. Huttenhower, G.A. Huttley, S. Janssen, A.K. Jarmusch, L. Jiang, B.D. Kaehler, K.B. Kang, C.R. Keefe, P. Keim, S.T. Kelley, D. Knights, I. Koester, T. Kosciolek, J. Kreps, M.G.I. Langille, J. Lee, R. Ley, Y.-X. Liu, E. Loftfield, C. Lozupone, M. Maher, C. Marotz, B.D. Martin, D. McDonald, L.J. McIver, A.V. Melnik, J.L. Metcalf, S.C. Morgan, J.T. Morton, A.T. Naimey, J.A. Navas-Molina, L.F. Nothias, S.B. Orchanian, T. Pearson, S.L. Peoples, D. Petras, M.L. Preuss, E. Pruesse, L.B. Rasmussen, A. Rivers, M.S. Robeson II, P. Rosenthal, N. Segata, M. Shaffer, A. Shiffer, R. Sinha, S.J. Song, J.R. Spear, A.D. Swafford, L.R. Thompson, P.J. Torres, P. Trinh, A. Tripathi, P.J. Turnbaugh, S. UlHasan, J.J.J. van der Hooft, F. Vargas, Y. Vazquez-Baeza, E. Vogtmann, M. von Hippel, W. Walters, Y. Wan, M. Wang, J. Warren, K.C. Weber, C.H.D. Williamson, A.D. Willis, Z.Z. Xu, J.R. Zaneveld, Y. Zhang, Q. Zhu, R. Knight and J.G. Caporaso. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37: 852-857. https://doi.org/10.1038/s41587-019-0209-9(2019) 

  7. Bylemans, J., E.M. Furlan, D.M. Gleeson, C.M. Hardy and R.P. Duncan. 2018. Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA. Environmental Science & Technology 52: 6408-6416. https://doi.org/10.1021/acs.est.8b01071 

  8. Carim, K., T. Wilcox, M. Young, K. McKelvey, M. Schwartz. 2015. Protocol for collecting eDNA samples from streams [Version 2.1]. Missoula, MT: U.S. Department of Agriculture Forest Service, Conservation NGCfWaF; 2015 July 2015. 

  9. Clarke, K.R. and W.M. Warwick. 1994. Similarity-based testing for community pattern: the 2-way layout with no replication. Marine Biology 118: 167-176. https://doi.org/10.1007/BF00699231 

  10. Clarke, K.R. and R.N. Gorley. 2006. PRIMER v6: User Manual/Tutorial(Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth. 

  11. Clarke, L.J., J.M. Beard, K.M. Swadling and B.E. Deagle. 2017. Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies. Ecology and Evolution 7: 873-883. https://doi.org/10.1002/ece3.2667 

  12. Collins, R.A., J. Bakker, O.S. Wangensteen, A.Z. Soto, L. Corrigan, D.W. Sims, M.J. Genner and S. Mariani. 2019. Nonspecific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution 10: 1985-2001. https://doi.org/10.1111/2041-210x.13276 

  13. Day, K., H. Campbell, A. Fisher, K. Gibb, B. Hill, A. Rose and S.N. Jarman. 2019. Development and validation of an environmental DNA test for the endangered Gouldian finch. Endangered Species Research 40: 171-182. https://doi.org/10.3354/ESR00987 

  14. Deiner, K., J.C. Walser, E. Machler and F. Altermatt. 2015. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation 183: 53-63. https://doi.org/10.1016/j.biocon.2014.11.018 

  15. Deiner, K., M.A. Renshaw, Y. Li, B.P. Olds, D.M. Lodge and M.E. Pfrender. 2017. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods in Ecology and Evolution 8: 1888-1898. https://doi.org/10.1111/2041-210X.12836 

  16. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461 

  17. Evans, N.T., B.P. Olds, M.A. Renshaw, C.R. Turner, Y. Li, C.L. Jerde, A.R. Mahon, M.E. Pfrender, G.A. Lamberti and D.M. Lodge. 2015. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources 16: 29-41. https://doi.org/10.1111/1755-0998.12433 

  18. Evans, N.T., Y. Li, M.A. Renshaw, B.P. Olds, K. Deiner, C.R. Turner, C.L. Jerde, D.M. Lodge, G.A. Lamberti and M.E. Pfrender. 2017. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences 74: 1362-1374. https://doi.org/10.1139/cjfas2016-0306 

  19. Ficetola, G.F., C. Miaud, F. Pompanon and P. Taberlet. 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423-425. https://doi.org/10.1098/rsbl.2008.0118 

  20. Ficetola, G.F., J. Pansu, A. Bonin, E. Coissac, C. Giguet-Covex, M. De Barba, L. Gielly, C.M. Lopes, F. Boyer, F. Pompanon, G. Raye and P. Taberlet. 2015. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources 15: 543-556. https://doi.org/10.1111/1755-0998.12338 

  21. Field, J.G., K.R. Clarke and M. Warwick. 1982. A practical strategy for analyzing multi-species distribution patterns. Marine Ecology Progress Series 8: 37-53. https://doi.org/10.3354/meps008037 

  22. Fitzpatrick, M.C., E.L. Preisser, A.M. Ellison and J.S. Elkinton. 2009. Observer bias and the detection of low-density populations. Ecological Applications 19: 1673-1679. https://doi.org/10.1890/09-0265.1 

  23. Fujii, K., H. Doi, S. Matsuoka, M. Nagano, H. Sato and H. Yamanaka. 2019. Environmental DNA metabarcoding for fish community analysis in backwater lakes: a comparison of capture methods. PLoS ONE 14: e0210357. https://doi.org/10.1371/journal.pone.0210357 

  24. Goldberg, C.S., C.R. Turner, K. Deiner, K.E. Klymus, P.F. Thomsen, M.A. Murphy, S.F. Spear, A. McKee, S.J. Oyler-McCance, R.S. Cornman, M.B. Laramie, A.R. Mahon, R.F. Lance, D.S. Pilliod, K.M. Strickler, L.P. Waits, A.K. Fremier, T. Takahara, J.E. Herder and P. Taberlet. 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution 7: 1299-1307. https://doi.org/10.1111/2041-210X.12595 

  25. Grealy, A.C., M.C. McDowell, P. Scofield, D.C. Murray, D.A. Fusco, J. Haile, G.J. Prideaux and M. Bunce. 2015. A critical evaluation of how ancient DNA bulk bone metabarcoding complements traditional morphological analysis of fossil assemblages. Quaternary Science Reviews 128: 37-47. https://doi.org/10.1016/j.quascirev.2015.09.014 

  26. Hinlo, R., D. Gleeson, M. Lintermans and E. Furlan. 2017. Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 12: e0179251. https://doi.org/10.1371/journal.pone.0179251 

  27. Kelly, R.P., J.A. Port, K.M. Yamahara, R.G. Martone, N. Lowell, P.F. Thomsen, M.E. Mach, M. Bennett, E. Prahler, M.R. Caldwell and L.B. Crowder. 2014. Harnessing DNA to improve environmental management. Science 344: 1455-1456. https://doi.org/10.1126/science.1251156 

  28. Knudsen, S.W., R.B. Ebert, M. Hesselsoe, F. Kuntke, J. Hassingboe, P.B. Mortensen, P.F. Thomsen, E.E. Sigsgaard, B.K. Hansen, E.E. Nielsen and P.R. Moller. 2019. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. Journal of Experimental Marine Biology and Ecology 510: 31-45. https://doi.org/10.1016/j.jembe.2018.09.004 

  29. Kumar, G., J.E. Eble and M.R. Gaither. 2019. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA. Molecular Ecology Resources 20: 29-39. https://doi.org/10.1111/1755-0998.13107 

  30. Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17: 10-12. https://doi.org/10.14806/ej.17.1.200 

  31. Minamoto, T., H. Yamanaka, T. Takahara, M.N. Honjo and Z. Kawabata. 2012. Surveillance of fish species composition using environmental DNA. Limnology 13: 193-197. https://doi.org/10.1007/s10201-011-0362-4 

  32. Minamoto, T., K. Hayami, M.K. Sakata and A. Imamura. 2019. Real-time polymerase chain reaction assays for environmental DNA detection of three salmonid fish in Hokkaido, Japan: Application to winter surveys. Ecological Research 34: 237-242. https://doi.org/10.1111/1440-1703.1018 

  33. Miya, M., Y. Sato, T. Fukunaga, T. Sado, J.Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh and W. Iwasaki. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 7: https://doi.org/10.1098/rsos.150088 

  34. Oliver, I. and A.J. Beattie. 1993. A possible method for the rapid assessment of biodiversity. Conservation Biology 7: 562-568. https://doi.org/10.1046/j.1523-1739.1993.07030562.x 

  35. Ruppert, K.M., R.J. Kline and M.S. Rahman. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17: e00547. https://doi.org/10.1016/j.gecco.2019.e00547 

  36. Sarmento-Soares, L.M. and R.F. Martins-Pinheiro. 2008. A systematic revision of Tatia (Siluriformes: Auchenipteridae: Centromochlinae). Neotropical Ichthyology 6: 495-542. https://doi.org/10.1590/S1679-62252008000300022 

  37. Schmelzle, M.C. and A.P. Kinziger. 2016. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species. Molecular Ecology Resources 16: 895-908. https://doi.org/10.1111/1755-0998.12501 

  38. Schrader, C., A. Schielke, L. Ellerbroek and R. Johne. 2012. PCR inhibitors-occurrence, properties and removal. Journal of Applied Microbiology 113: 1014-1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x 

  39. Seymour, M., I. Durance, B.J. Cosby, E. Ransom-Jones, K. Deiner, S.J. Ormerod, J.K. Colbourne, G. Wilgar, G.R. Carvalho and M. de Bruyn. 2018. Acidity promotes degradation of multispecies environmental DNA in lotic mesocosms. Communications Biology 1: 4. https://doi.org/10.1038/s42003-017-0005-3 

  40. Shu, L., A. Ludwig and Z. Peng. 2020. Standards for methods utilizing environmental DNA for detection of fish species. Genes 11: 296. https://doi.org/10.3390/genes11030296 

  41. Simpfendorfer, C.A., P.M. Kyne, T.H. Noble, J. Goldsbury, R.K. Basiita, R. Lindsay, A. Shields, C. Perry and D.R. Jerry. 2016. Environmental DNA detects critically endangered largetooth sawfish in the wild. Endangered Species Research 30: 109-116. https://doi.org/10.3354/esr00731 

  42. Stoeckle, B.C., S. Beggel, A.F. Cerwenka, E. Motivans, R. Kuehn R and J. Geist. 2017. A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems. PloS ONE 12: e0189119. https://doi.org/10.1371/journal.pone.0189119 

  43. Taberlet, P., E. Coissac, M. Hajibabaei and L.H. Rieseberg. 2012. Environmental DNA. Molecular Ecology 21: 1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x 

  44. Taberlet, P., A. Bonin, L. Zinger and E. Coissac. 2018. Environmental DNA: For Biodiversity Research and Monitoring. Oxford University Press, Oxford. 

  45. Takahara, T., T. Minamoto, H. Yamanaka, H. Doi and Z. Kawabata. 2012. Estimation of fish biomass using environmental DNA. PLoS ONE 7: e35868. https://doi.org/10.1371/journal.pone.0035868 

  46. Takahara, T., T. Minamoto and H. Doi. 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8: e56584. https://doi.org/10.1371/journal.pone.0056584 

  47. Tsuji, S., M. Ushio, S. Sakurai, T. Minamoto and H. Yamanaka. 2017. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS ONE 12: e0176608. https://doi.org/10.1371/journal.pone.0176608 

  48. Tsuji, S., T. Takahara, H. Doi, N. Shibata and H. Yamanaka. 2019. The detection of aquatic macroorganisms using environmental DNA analysis - A review of methods for collection, extraction, and detection. Environmental DNA 1: 99-108. https://doi.org/10.1002/edn3.21 

  49. Vasselon, V., I. Domaizon, F. Rimet, M. Kahlert and A. Bouchez. 2017. Application of high-throughput sequencing (HTS) metabarcoding to diatom biomonitoring: Do DNA extraction methods matter? Freshwater Science 36: 162-177. https://doi.org/10.1086/690649 

  50. Wang, S., Z. Yan, B. Hanfling, X. Zheng, P. Wang, J. Fan and J. Li. 2021. Methodology of fish eDNA and its applications in ecology and environment. Science of the Total Environment 755: 1-17. https://doi.org/10.1016/j.scitotenv.2020.142622 

  51. Weltz, K., J.M. Lyle, J. Ovenden, J.A.T. Morgan and D.A. Moreno. 2017. Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS ONE 12: e0178124. https://doi.org/10.1371/journal.pone.0178124 

  52. Zhang, S., J. Zhao and M. Yao. 2020. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods in Ecology and Evolution 11: 1609-1625. https://doi.org/10.1111/2041-210X.13485 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로