$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Deep learning-based series AC arc detection algorithms

Journal of power electronics, v.21 no.10, 2021년, pp.1621 - 1631  

Park, Chang-Ju (School of Electrical and Electronics Engineering, Chung-Ang University) ,  Dang, Hoang-Long (School of Electrical and Electronics Engineering, Chung-Ang University) ,  Kwak, Sangshin (School of Electrical and Electronics Engineering, Chung-Ang University) ,  Choi, Seungdeog (Department of Electrical and Computer Engineering, Mississippi State University)

Abstract AI-Helper 아이콘AI-Helper

Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the perform...

주제어

참고문헌 (29)

  1. Bao, G., Jiang, R., Gao, X.: Novel series arc fault detector using high-frequency coupling analysis and multi-indicator algorithm. IEEE Access. 7, 92161-92170 (2019) 

  2. Artale, G., Cataliotti, A., Cosentino, V., Di Cara, D., Nuccio, S., Tine, G.: Arc Fault detection method based on CZT low-frequency harmonic current analysis. IEEE Trans. Instrum. Meas. 66(5), 888-896 (2017) 

  3. Saleh, S.A., Aljankawey, A.S., Errouissi, R., Rahman, M.A.: Phase-based digital protection for arc flash faults. IEEE Trans. Ind. Appl. 52(3), 2110-2121 (2016) 

  4. Saleh, S.A., Rahman, M.A.: Modeling and protection of a three-phase power transformer using wavelet packet transform. IEEE Trans. Power Delivery 20(2), 1273-1282 (2005) 

  5. Kim, C.-H., Kim, H., Ko, Y.-H., Byun, S.-H., Aggarwal, R.K., Johns, A.T.: A novel fault-detection technique of high-impedance arcing faults in transmission lines using the wavelet transform. IEEE Trans. Power Delivery 17(4), 921-929 (2002) 

  6. Lim, J., Runolfsson, T.: Improvement of the voltage difference method to detect arcing faults within unfused grounded-Wye 22.9-kV shunt capacitor bank. IEEE Trans. Power Delivery. 22(1), 95-100 (2007) 

  7. Radojevic, Z.M., Terzija, V.V., Djuric, N.B.: Numerical algorithm for overhead lines arcing faults detection and distance and directional protection. IEEE Trans. Power Delivery 15(1), 31-37 (2000) 

  8. Wang, B., Geng, J., Dong, X.: High-impedance fault detection based on nonlinear voltage-current characteristic profile identification. IEEE Trans. Smart Grid. 9(4), 3783-3791 (2018) 

  9. Djuric, M.B., Radojevic, Z.M., Terzija, V.V.: Time-domain solution of fault distance estimation and arcing faults detection on overhead lines. IEEE Trans. Power Delivery 14(1), 60-67 (1999) 

  10. Lee, C.J., Park, J.B., Shin, J.R., Radojevie, Z.M.: A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition. IEEE Trans. Power Syst. 21(3), 1460-1462 (2006) 

  11. Russell, B.D., Benner, C.L.: Arcing fault detection for distribution feeders: security assessment in long term field trials. IEEE Trans. Power Delivery 10(2), 676-683 (1995) 

  12. Saleh, S.A., Valdes, M.E., Mardegan, C.S., Alsayid, B.: The state-of-the-art methods for digital detection and identification of arcing current faults. IEEE Trans. Ind. Appl. 55(5), 4536-4550 (2019) 

  13. Charytoniuk, W., Lee, W.-J., Chen, M.-S., Cultrera, J., Maffetone, T.: Arcing fault detection in underground distribution networks-feasibility study. IEEE Trans. Ind. Appl. 36(6), 1756-1761 (2000) 

  14. Qu, N., Wang, J., Liu, J.: An arc fault detection method based on current amplitude spectrum and sparse representation. IEEE Trans. Instrum. Meas. 68(10), 3785-3792 (2019) 

  15. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, PCh., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215-220 (2000) 

  16. Li, Z., et al.: E-RNN: Design Optimization for Efficient Recurrent Neural Networks in FPGAs. 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), Washington, DC, USA, 69-80 (2019) 

  17. Senturk, u., Yucedag, I. and Polat, K.: Repetitive neural network (RNN) based blood pressure estimation using PPG and ECG signals. 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, 1-4 (2018). 

  18. Wang, Y., Zhang, F., Zhang, X., Zhang, S.: Series AC arc fault detection method based on hybrid time and frequency analysis and fully connected neural network. IEEE Trans. Industr. Inf. 15(12), 6210-6219 (2019) 

  19. Wang, Y., Hou, L., Paul, K. C., Ban, Y., Chen, C. and Zhao T.: Series AC arc fault detection based on raw current and convolutional neural network. IEEE Transactions on Industrial Informatics (2021) 

  20. Abdulrachman, M. A., Prasetyono, E., Anggriawan, D. O. and Tjahjono A.: Smart detection of AC series arc fault on home voltage line based on fast Fourier transform and artificial neural network. 2019 International Electronics Symposium (IES). 439-445 (2019) 

  21. Jiang, J., et al.: Series arc detection and complex load recognition based on principal component analysis and support vector machine. IEEE Access. 7, 47221-47229 (2019) 

  22. Li, W., Liu, Y., Li, Y., Guo, F.: Series arc fault diagnosis and line selection method based on recurrent neural network. IEEE Access. 8, 177815-177822 (2020) 

  23. Wang, Y., Zhang, F., Zhang, S.: A new methodology for identifying arc fault by sparse representation and neural network. IEEE Trans. Instrum. Meas. 67(11), 2526-2537 (2018) 

  24. Le, V., Yao, X., Miller, C., Tsao, B.: Series DC arc fault detection based on ensemble machine learning. IEEE Trans. Power Electron. 35(8), 7826-7839 (2020) 

  25. Gao, H., et al.: Research on feature of series arc fault based on improved SVD. 2017 IEEE Holm Conference on Electrical Contacts, Denver, CO, 325-331 (2017) 

  26. Satpathi, K., Yeap, Y.M., Ukil, A., Geddada, N.: Short-time Fourier transform based transient analysis of VSC interfaced point-to-point DC system. IEEE Trans. Industr. Electron. 65(5), 4080-4091 (2018) 

  27. Gu, J., Lai, D., Wang, J., Huang, J., Yang, M.: Design of a DC series arc fault detector for photovoltaic system protection. IEEE Trans. Ind. Appl. 55(3), 2464-2471 (2019) 

  28. Borges, F.A.S., Fernandes, R.A.S., Silva, I.N., Silva, C.B.S.: Feature extraction and power quality disturbances classification using smart meters signals. IEEE Trans. Industr. Inf. 12(2), 824-833 (2016) 

  29. Park, C.-J.: Research on series and parallel arc detection technology on AC line. Master thesis, Chung-Ang University (2021) 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로