$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

딥러닝 기반 레이더 간섭 위상 언래핑 기술 고찰
A Review on Deep-learning-based Phase Unwrapping Technique for Synthetic Aperture Radar Interferometry 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.38 no.6 pt.2, 2022년, pp.1589 - 1605  

백원경 (서울시립대학교 공간정보공학과) ,  정형섭 (서울시립대학교 공간정보공학과)

초록
AI-Helper 아이콘AI-Helper

위상 언래핑은 위성레이더 간섭기법의 필수적인 자료처리 절차다. 이에 따라 비 딥러닝 기반 언래핑 기법이 다수 개발되었으며 최근에는 딥러닝 기반 언래핑 기법이 제안되고 있다. 본 논문에서는 딥러닝 기반 위성레이더 언래핑 기법을 1) 언래핑된 위상의 예측 방법, 2) 위상 언래핑을 위한 딥러닝 모델의 구조 그리고 3) 학습데이터 제작 방법의 측면에서 최근 연구 동향을 소개하였다. 언래핑된 위상을 예측하는 방법은 모호 정수 분류방법, 위상 단절 구간 탐지 방법, 위상 예측 방법, 딥러닝과 전통적인 언래핑 기법의 연계 방법에 따라 다시 세분화하여 연구 동향을 나타냈다. 일반적으로 활용되는 딥러닝 모델 구조의 특징과 전체 위상 정보를 파악하기 위한 모델 최적화 방법에 대한 연구 사례를 소개하였다. 또한 학습데이터 제작 방법은 주로 위상 변이 제작과 노이즈 시뮬레이션 방법으로 구분하여 연구 동향을 정리하였으며 추후 발전 방향을 제시하였다. 본 논문이 추후 국내의 딥러닝 기반 위상 언래핑 연구의 발전 방향을 모색하는 데에 필요한 기반 자료로 활용되기를 기대한다.

Abstract AI-Helper 아이콘AI-Helper

Phase unwrapping is an essential procedure for interferometric synthetic aperture radar techniques. Accordingly, a lot of phase unwrapping methods have been developed. Deep-learning-based unwrapping methods have recently been proposed. In this paper, we reviewed state-of-the-art deep-learning-based ...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 이에 따라 본 논문에서는 딥러닝 기반 위성레이더 간섭영상 언래핑 기술에 대하여 고찰하고자 한다. 이와 관련하여 이후 장에서는 위상 언래핑의 정의와 전통적인 비 딥러닝 기반 언래핑 기법에 대하여 간략하게 소개하고, 최근 딥러닝 기반 언래핑 기법을 딥러닝 모델구조, 언래핑 결과 예측 방법 그리고 학습데이터 제작 방법에 따라 구분하여 연구 방향을 소개하고자 한다.
  • 하지만 아직까지 초기 연구단계로 다양한 방향으로 그 가능성이 제시되고 있다. 이에 따라 본 장에서는 딥러닝 기반 언래핑 기법에 일반적으로 활용되는 패치기반 완전 합성곱 신경망(patch-based fully convolutional neural network)을 간략하게 설명하고, 영상 기반 딥러닝 기법의 연구 사례에 대하여 서술하고자 한다. 이때 영상 기반 딥러닝 기법의 모델 학습을 위한 데이터 시뮬레이션 방법, 모델 구조, 그리고 최종적인 언래핑 결과 예측 방법을 중점적으로 리뷰하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (64)

  1. Badrinarayanan, V., A. Kendall, and R. Cipolla, 2017. Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615/ 

  2. Baek, W.-K., H.-S. Jung, and S.-H. Chae, 2018a. Feasibility of ALOS2 PALSAR2 offset-based phase unwrapping of SAR interferogram in large and complex surface deformations, IEEE Access, 6: 45951-45960. https://doi.org/10.1109/ACCESS.2018.2865799 

  3. Baek, W.-K. and H.-S. Jung, 2018b. Precise measurements of the along-track surface deformation related to the 2016 Kumamoto earthquakes via ionospheric correction of multiple-aperture SAR interferograms, Korean Journal of Remote Sensing, 34(6-4): 1489-1501 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2018.34.6.4.3 

  4. Baek, W.-K., H.-S. Jung, M.-J. Jo, W.-J. Lee, and L. Zhang, 2018c. Ground subsidence observation of solid waste landfill park using multi-temporal radar interferometry, International Journal of Urban Sciences, 23(3): 406-421. https://doi.org/10.1080/12265934.2018.1468275 

  5. Baek, W.-K. and H.-S. Jung, 2019. A review of change detection techniques using multi-temporal synthetic aperture radar images, Korean Journal of Remote Sensing, 35(5-1): 737-750 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2019.35.5.1.10 

  6. Baek, W.-K. and H.-S. Jung, 2020a. Precise Three-Dimensional Deformation Retrieval in Large and Complex Deformation Areas via Integration of Offset-Based Unwrapping and Improved Multiple-Aperture SAR Interferometry: Application to the 2016 Kumamoto Earthquake, Engineering, 6(8): 927-935. https://doi.org/10.1016/j.eng.2020.06.012 

  7. Baek, W.-K., H.-S. Jung, and T.-S. Kim, 2020b. Satellite radar observation of large surface collapses induced by the 2017 North Korea nuclear test, Scientific Reports, 10(1): 1-14. https://doi.org/10.1038/s41598-020-74957-2 

  8. Baek, W.-K., 2022, Phase Unwrapping Using Modified U-Net Regression Model: Focusing on Network Structure and Training Data Optimization, University of Seoul, Seoul, Korea (in Korean with English abstract). 

  9. Bera, S. and V.K. Shrivastava, 2020. Effect of pooling strategy on convolutional neural network for classification of hyperspectral remote sensing images, IET Image Processing, 14(3): 480-486. https://doi.org/10.1049/iet-ipr.2019.0561 

  10. Boncori, J.P.M., 2019. Measuring coseismic deformation with spaceborne synthetic aperture radar: A Review, Frontiers in Earth Science, 7: 16. https://doi.org/10.3389/feart.2019.00016 

  11. Boureau, Y.L., N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, 2011. Ask the locals: multi-way local pooling for image recognition, Proc. of 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, Nov. 6-11, pp. 2651-2658. https://doi.org/10.1109/ICCV.2011.6126555 

  12. Chae, S.-H., W.-J. Lee, W.-K. Baek, and H.-S. Jung, 2019. An improvement of the performance of SAR offset tracking approach to measure optimal surface displacements, IEEE Access, 7: 131627-131637. https://doi.org/10.1109/ACCESS.2019.2938831 

  13. Chen, C.W. and H.A. Zebker, 2000 Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms, Journal of the Optical Society of America A, 17(3): 401-414. https://doi.org/10.1364/JOSAA.17.000401 

  14. Chen, C.W. and H.A. Zebker, 2001. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, Journal of the Optical Society of America A, 18(2): 338-351. https://doi.org/10.1364/JOSAA.18.000338 

  15. Chen, C.W. and H.A. Zebker, 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1709-1719. https://doi.org/10.1109/TGRS.2002.802453 

  16. Chen, R., W. Yu, R. Wang, G. Liu, and Y. Shao, 2013. Integrated denoising and unwrapping of InSAR phase based on Markov random fields, IEEE Transactions on Geoscience and Remote Sensing, 51(8): 4473-4485. https://doi.org/10.1109/TGRS.2013.2268969 

  17. Cho, K., B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv preprint arXiv:1406.1078. https://doi.org/10.48550/arXiv.1406.1078 

  18. Costantini, M., 1998. A novel phase unwrapping method based on network programming, IEEE Transactions on Geoscience and Remote Sensing, 36(3): 813-821. https://doi.org/10.1109/36.673674 

  19. Eineder, M., M. Hubig, and B. Milcke, 1998. Unwrapping large interferograms using the minimum cost flow algorithm, Proc of 1998 IEEE International Geoscience and Remote Sensing, Seattle, WA, USA, Jul. 6-10, vol. 1, pp. 83-87. 

  20. Flynn, T.J., 1997. Two-dimensional phase unwrapping with minimum weighted discontinuity, Journal of the Optical Society of America A, 14(10): 2692-2701. https://opg.optica.org/josaa/fulltext.cfm?urijosaa-14-10-2692&id1988 

  21. Ghiglia, D.C. and L.A. Romero, 1996. Minimum Lp-norm two-dimensional phase unwrapping, Journal of the Optical Society of America A, 13(10): 1999-2013. https://doi.org/10.1364/JOSAA.13.001999 

  22. Ghiglia, D.C., G.A. Mastin, and L.A. Romero, 1987. Cellular-automata method for phase unwrapping, Journal of the Optical Society of America A, 4(1): 267-280. https://doi.org/10.1364/JOSAA.4.000267 

  23. Goldstein, R.M., H.A. Zebker, and C.L. Werner, 1988. Satellite radar interferometry: Two-dimensional phase unwrapping, Radio Science, 23(4): 713-720. https://doi.org/10.1029/RS023i004p00713 

  24. Itoh, K., 1982. Analysis of the phase unwrapping problem, Applied Optics, 21(14): 2470. https://doi.org/10.1364/AO.21.002470 

  25. Jo, M.-J., B. Osmanoglu, and H.-S. Jung, 2018. Detecting Surface Changes Triggered by Recent Volcanic Activities at Kilauea, Hawai'i, by using the SAR Interferometric Technique: Preliminary Report, Korean Journal of Remote Sensing, 34(6-4): 1545-1553 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2018.34.6.4.7 

  26. Johnson, J.M. and T.M. Khoshgoftaar, 2019. Survey on deep learning with class imbalance, Journal of Big Data, 6(1): 1-54. https://doi.org/10.1186/s40537-019-0192-5 

  27. Joughin, I.R., D.P. Winebrenner, and D.B. Percival, 1994. Probability density functions for multilook polarimetric signatures, IEEE Transactions on Geoscience and Remote Sensing, 32(3): 562-574. https://doi.org/10.1109/36.297975 

  28. Jung, H.-S., Z. Lu, J.S. Won, M.P. Poland, and A. Miklius, 2011. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea volcano, Hawaii, IEEE Geoscience and Remote Sensing Letters, 8(1): 34-38. https://doi.org/10.1109/LGRS.2010.2051793 

  29. Kim, S. and Y.S. Kim, 2002. Two-dimensional phase unwrapping using wavelet transform, Electronics Letters, 38(1): 19-20. https://doi.org/10.1049/el:20020007 

  30. LeCun, Y., Y. Bengio, and G. Hinton, 2015. Deep learning, Nature, 521(7553): 436-444. https://doi.org/10.1038/nature14539 

  31. Lee, J. S., K.W. Hoppel, S.A. Mango, and A.R. Miller, 1994. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, 32(5): 1017-1028. https://doi.org/10.1109/36.312890 

  32. Lee, S.P., Y.K. Chan, T.S. Lim, and V.C. Koo, 2016. Modelling and simulation for InSAR, International Journal of Geoinformatics, 12(2): 49-58. 

  33. Lee, W.-J., H.-S. Jung, and Z. Lu, 2015. Application of ERS and Envisat cross-interferometry to generation and accuracy assessment of digital elevation model over northern Alaska, Journal of Applied Remote Sensing, 9(1): 096065. https://doi.org/10.1117/1.JRS.9.096065 

  34. Li, L., H. Zhang, Y. Tang, C. Wang, and F. Gu, 2022. InSAR Phase Unwrapping by Deep Learning Based on Gradient Information Fusion, IEEE Geoscience and Remote Sensing Letters, 19: 1-5. https://doi.org/10.1109/LGRS.2021.3127318 

  35. Loffe, S. and C. Szegedy, 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc. of the 32nd International Conference on Machine Learning, Lille, France, Jul. 6-11, vol. 37, pp. 448-456. https://doi.org/10.48550/arXiv.1502.03167%20Focus%20to%20learn%20more 

  36. Loffeld, O., H. Nies, S. Knedlik, and W. Yu, 2007. Phase unwrapping for SAR interferometry-A data fusion approach by Kalman filtering, IEEE Transactions on Geoscience and Remote Sensing, 46(1): 47-58. https://doi.org/10.1109/TGRS.2007.909081 

  37. Long, J., E. Shelhamer, and T. Darrell, 2015. Fully convolutional networks for semantic segmentation, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, Jun. 7-12, pp. 3431-3440. https://doi.org/10.48550/arXiv.1411.4038 

  38. Mahsa, M. and T. Lee, 2018. Comparison of optimization algorithms in deep learning-based neural networks for hydrological forecasting: case study of nam river daily runoff, Journal of the Korean Society of Hazard Mitigation, 18(6): 377-384 (in Korean with English abstract). http://doi.org/10.9798/KOSHAM.2018.18.6.377 

  39. Martinez-Espla, J.J., T. Martinez-Marin, and J.M. Lopez-Sanchez, 2009. A particle filter approach for InSAR phase filtering and unwrapping, IEEE Transactions on Geoscience and Remote Sensing, 47(4): 1197-1211. https://doi.org/10.1109/TGRS.2008.2008095 

  40. Oliveira, G. L., 2019. Encoder-decoder Methods for Semantic Segmentation: Efficiency and Robustness Aspects, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany. 

  41. Pepe, A. and F. Calo, 2017. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth's surface displacements, Applied Sciences, 7(12): 1264. https://doi.org/10.3390/app7121264 

  42. Pu, L., X. Zhang, Z. Zhou, L. Li, L. Zhou, J. Shi, and S. Wei, 2021. A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network, Remote Sensing, 13(22): 4564. https://doi.org/10.3390/rs13224564 

  43. Rabus, B. and M. Pichierri, 2018. A new InSAR phase demodulation technique developed for a typical example of a complex, multi-lobed landslide displacement field, Fels Glacier Slide, Alaska, Remote Sensing, 10(7): 995. https://doi.org/10.3390/rs10070995 

  44. Rodriguez, E. and J.M. Martin, 1992. Theory and design of interferometric synthetic aperture radars, IEE Proceedings F: Radar and Signal Processing, 139(2): 147-159. https://doi.org/10.1049/ip-f-2.1992.0018 

  45. Ronneberger, O., P. Fischer, and T. Brox, 2015. U-net: Convolutional networks for biomedical image segmentation, Proc. of 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, Oct. 5-9, pp. 234-241. https://doi.org/10.48550/arXiv.1505.04597 

  46. Rosen, P.A., S. Hensley, I.R. Joughin, F.K. Li, S.N. Madsen, E. Rodriguez, and R.M. Goldstein, 2000. Synthetic aperture radar interferometry, Proceedings of the IEEE, 88(3): 333-382. https://doi.org/10.1109/5.838084 

  47. Shelhamer, E., J. Long, and T. Darrell, 2016. Fully convolutional networks for semantic segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4): 640-651. https://doi.org/10.48550/arXiv.1411.4038 

  48. Sica, F., F. Calvanese, G. Scarpa, and P. Rizzoli, 2020. A CNN-based coherence-driven approach for InSAR phase unwrapping, IEEE Geoscience and Remote Sensing Letters, 19: 4003705. https://doi.org/10.1109/LGRS.2020.3029565 

  49. Spoorthi, G.E., R.K.S.S. Gorthi, and S. Gorthi, 2020. PhaseNet 2.0: Phase unwrapping of noisy data based on deep learning approach, IEEE Transactions on Image Processing, 29: 4862-4872. https://doi.org/10.1109/TIP.2020.2977213 

  50. Spoorthi, G.E., S. Gorthi and R.K.S.S. Gorthi, 2018. A Deep Learning-based Model for Phase Unwrapping, Proc. of 2018 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, Dec. 18-22, pp. 1-8. https://doi.org/10.1109/TIP.2020.2977213 

  51. Wang, K., Y. Li, Q. Kemao, J. Di, and J. Zhao, 2019. One-step robust deep learning phase unwrapping, Optics Express, 27(10): 15100-15115. https://doi.org/10.1364/OE.27.015100 

  52. Wang, T., S. Wei, X. Shi, Q. Qiu, L. Li, D. Peng, R.J. Weldon, and S. Barbot, 2018. The 2016 Kaikoura earthquake: Simultaneous rupture of the subduction interface and overlying faults, Earth and Planetary Science Letters, 482: 44-51. https://doi.org/10.1016/j.epsl.2017.10.056 

  53. Wu, Z., T. Wang, Y. Wang, R. Wang, and D. Ge, 2021. Deep-learning-based phase discontinuity prediction for 2-D phase unwrapping of SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 60: 1-16. https://doi.org/10.1109/TGRS.2021.3121906 

  54. Yu, H., Y. Lan, H. Lee, and N. Cao 2018. 2-D phase unwrapping using minimum infinity-norm, IEEE Geoscience and Remote Sensing Letters, 15(12): 1887-1891. https://doi.org/10.1109/LGRS.2018.2865601 

  55. Yu, H., Y. Lan, Z. Yuan, J. Xu, and H. Lee, 2019. Phase unwrapping in InSAR: A review, IEEE Geoscience and Remote Sensing Magazine, 7(1): 40-58. https://doi.org/10.1109/MGRS.2018.2873644 

  56. Yue, H., Z.E. Ross, C. Liang, S. Michel, H. Fattahi, E. Fielding, A. Moore, Z. Liu, and B. Jia, 2017. The 2016 Kumamoto Mw 7.0 earthquake: A significant event in a fault-volcano system, Journal of Geophysical Research: Solid Earth, 122(11): 9166-9183. https://doi.org/10.1002/2017JB014525 

  57. Yun, S.H., H.A. Zebker, P. Segall, A. Hooper, and M. Poland, 2007. Interferogram formation in the presence of complex and large deformation, Geophysical Research Letters, 34: L12305. https://doi.org/10.1029/2007GL029745 

  58. Zebker, H.A. and Y. Lu, 1998. Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms, Journal of the Optical Society of America A, 15(3): 586-598. https://doi.org/10.1364/JOSAA.15.000586 

  59. Zebker, H.A. and J. Villasenor, 1992. Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 30(5): 950-959. https://doi.org/10.1109/36.175330 

  60. Zeyada, H.H., M.S. Mostafa, M.M. Ezz, A.H. Nasr, and H.M. Harb, 2022. Resolving phase unwrapping in interferometric synthetic aperture radar using deep recurrent residual U-Net, The Egyptian Journal of Remote Sensing and Space Science, 25(1): 1-10. https://doi.org/10.1016/j.ejrs.2021.12.001 

  61. Zheng, D. and F. Da, 2011. A novel algorithm for branch cut phase unwrapping, Optics and Lasers in Engineering, 49(5): 609-617. https://doi.org/10.1016/j.optlaseng.2011.01.017 

  62. Zhou, L., H. Yu, and Y. Lan, 2020. Deep convolutional neural network-based robust phase gradient estimation for two-dimensional phase unwrapping using SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 58(7): 4653-4665. https://doi.org/10.1109/TGRS.2020.2965918 

  63. Zhou, L., H. Yu, Y. Lan, and M. Xing, 2022b. Deep learning-based branch-cut method for InSAR two-dimensional phase unwrapping, IEEE Transactions on Geoscience and Remote Sensing, 60: 1-15. https://doi.org/10.1109/TGRS.2021.3099997 

  64. Zhou, L., H. Yu, V. Pascazio, and M. Xing, 2022a. PU-GAN: A One-Step 2-D InSAR Phase Unwrapping Based on Conditional Generative Adversarial Network, IEEE Transactions on Geoscience and Remote Sensing, 60: 1-10. https://doi.org/10.1109/TGRS.2022.3145342 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로