$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Insect peptide CopA3 promotes proliferation and PAX7 and MYOD expression in porcine muscle satellite cells 원문보기

Journal of animal science and technology : JAST, v.64 no.6, 2022년, pp.1132 - 1143  

Jeongeun, Lee (Department of Agricultural Convergence Technology, Jeonbuk National University) ,  Jinryoung, Park (Department of Stem Cell and Regenerative Biotechnology, Konkuk University) ,  Hosung, Choe (Department of Animal Biotechnology, Jeonbuk National University) ,  Kwanseob, Shim (Department of Agricultural Convergence Technology, Jeonbuk National University)

Abstract AI-Helper 아이콘AI-Helper

Insects are a valuable natural source that can produce a variety of bioactive compounds due to their increasing species diversity. CopA3 is an antimicrobial peptide derived from Copris tripartitus (i.e., the dung beetle). It is known to increase the proliferation of colonic epithelial and neuronal s...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

데이터처리

  • One-way analysis of variance (ANOVA) was followed by Duncan’s Multiple Range Test to compare statistically significant differences in each group
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. 1. Casciaro B Cappiello F Loffredo MR Mangoni ML Methods for the in vitro examination of the antibacterial and cytotoxic activities of antimicrobial peptides Sandrelli F Tettamanti G Immunity in insects. New York, NY Humana 2020 p 147 62 10.1007/978-1-0716-0259-1_9 

  2. 2. Stork NE How many species of insects and other terrestrial arthropods are there on Earth Annu Rev Entomol. 2018 63 31 45 10.1146/annurev-ento-020117-043348 28938083 

  3. 3. Li Y Xiang Q Zhang Q Huang Y Su Z Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application Peptides. 2012 37 207 15 10.1016/j.peptides.2012.07.001 22800692 

  4. 4. Wu Q Patočka J Kuča K Insect antimicrobial peptides, a mini review Toxins. 2018 10 461 10.3390/toxins10110461 30413046 

  5. 5. Xiao H Shao F Wu M Ren W Xiong X Tan B The application of antimicrobial peptides as growth and health promoters for swine J Anim Sci Biotechnol. 2015 6 19 10.1186/s40104-015-0018-z 26019864 

  6. 6. Kim HJ Kim DH Lee JY Hwang JS Lee JH Lee SG Study of anti-inflammatory effect of CopA3 peptide derived from Copris tripartitus J Life Sci. 2013 23 38 43 10.5352/JLS.2013.23.1.38 

  7. 7. Lee J Kim I Shin Y Park H Lee Y Lee I Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells Tumor Biol. 2016 37 3237 45 10.1007/s13277-015-4162-z 26432335 

  8. 8. Kim IW Kim S Kwon YN Yun EY Ahn MY Kang DC Effects of the synthetic coprisin analog peptide, CopA3 in pathogenic microorganisms and mammalian cancer cells J Microbiol Biotechnol. 2012 22 156 8 10.4014/jmb.1109.09014 22297233 

  9. 9. Kim S Kim IW Kwon YN Yun EY Hwang JS Synthetic Coprisin analog peptide, D-CopA3 has antimicrobial activity and pro-apoptotic effects in human leukemia cells J Microbiol Biotechnol. 2012 22 264 9 10.4014/jmb.1110.10071 22370360 

  10. 10. Lee JH Kim IW Kim SH Yun EY Nam SH Ahn MY Anticancer activity of CopA3 dimer peptide in human gastric cancer cells BMB Rep. 2015 48 324 9 10.5483/BMBRep.2015.48.6.073 25047444 

  11. 11. Dayton WR White ME Cellular and molecular regulation of muscle growth and development in meat animals J Anim Sci. 2008 86 E217 25 10.2527/jas.2007-0456 17709769 

  12. 12. Zammit PS Beauchamp JR The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation. 2001 68 193 204 10.1046/j.1432-0436.2001.680407.x 11776472 

  13. 13. Dhawan J Rando TA Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment Trends Cell Biol. 2005 15 666 73 10.1016/j.tcb.2005.10.007 16243526 

  14. 14. Marroncelli N Bianchi M Bertin M Consalvi S Saccone V De Bardi M HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes Sci Rep. 2018 8 3448 10.1038/s41598-018-21835-7 29472596 

  15. 15. Pavlath GK Horsley V Cell fusion in skeletal muscle: central role of NFATC2 in regulating muscle cell size Cell Cycle. 2003 2 420 3 10.4161/cc.2.5.497 12963831 

  16. 16. Mesires NT Doumit ME Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle Am J Physiol Cell Physiol. 2002 282 C899 906 10.1152/ajpcell.00341.2001 11880278 

  17. 17. Pallafacchina G Blaauw B Schiaffino S Role of satellite cells in muscle growth and maintenance of muscle mass Nutr Metab Cardiovasc Dis. 2013 23 S12 8 10.1016/j.numecd.2012.02.002 22621743 

  18. 18. Bentzinger CF Wang YX Rudnicki MA Building muscle: molecular regulation of myogenesis Cold Spring Harb Perspect Biol. 2012 4 a008342 10.1101/cshperspect.a008342 22300977 

  19. 19. Moresi V Marroncelli N Adamo S New insights into the epigenetic control of satellite cells World J Stem Cells. 2015 7 945 55 10.4252/wjsc.v7.i6.945 26240681 

  20. 20. Yin H Price F Rudnicki MA Satellite cells and the muscle stem cell niche Physiol Rev. 2013 93 23 67 10.1152/physrev.00043.2011 23303905 

  21. 21. Le Grand F Rudnicki MA Skeletal muscle satellite cells and adult myogenesis Curr Opin Cell Biol. 2007 19 628 33 10.1016/j.ceb.2007.09.012 17996437 

  22. 22. Oishi Y Hayashida M Tsukiashi S Taniguchi K Kami K Roy RR Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers J Appl Physiol. 2009 107 1612 21 10.1152/japplphysiol.91651.2008 19556452 

  23. 23. Kamanga-Sollo E Pampusch MS White ME Hathaway MR Dayton WR Effects of heat stress on proliferation, protein turnover, and abundance of heat shock protein messenger ribonucleic acid in cultured porcine muscle satellite cells J Anim Sci. 2011 89 3473 80 10.2527/jas.2011-4123 21742942 

  24. 24. Xiong X Yang HS Li L Wang YF Huang RL Li FN Effects of antimicrobial peptides in nursery diets on growth performance of pigs reared on five different farms Livest Sci. 2014 167 206 10 10.1016/j.livsci.2014.04.024 

  25. 25. Park J Lee J Song KD Kim SJ Kim DC Lee SC Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes Anim Biosci. 2021 34 1392 402 10.5713/ab.20.0585 33561926 

  26. 26. Livak KJ Schmittgen TD Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method Methods. 2001 25 402 8 10.1006/meth.2001.1262 11846609 

  27. 27. Kang BR Kim H Nam SH Yun EY Kim SR Ahn MY CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway BMB Rep. 2012 45 85 90 10.5483/BMBRep.2012.45.2.85 22360885 

  28. 28. Nam ST Kim DH Lee MB Nam HJ Kang JK Park MJ Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis Biochem Biophys Res Commun. 2013 437 35 40 10.1016/j.bbrc.2013.06.031 23791873 

  29. 29. Kim DH Hwang JS Lee IH Nam ST Hong J Zhang P The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut J Biol Chem. 2016 291 3209 23 10.1074/jbc.M115.682856 26655716 

  30. 30. Graña X Reddy EP Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs) Oncogene. 1995 11 211 9 7624138 

  31. 31. Nigg EA Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle BioEssays. 1995 17 471 80 10.1002/bies.950170603 7575488 

  32. 32. Starostina NG Kipreos ET Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors Trends Cell Biol. 2012 22 33 41 10.1016/j.tcb.2011.10.004 22154077 

  33. 33. Sato J Nair K Hiddinga J Eberhardt NL Fitzpatrick LA Katusic ZS eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis Cardiovasc Res. 2000 47 697 706 10.1016/S0008-6363(00)00137-1 10974218 

  34. 34. Bond M Sala-Newby GB Wu YJ Newby AC Biphasic effect of p21Cip1 on smooth muscle cell proliferation: role of PI 3-kinase and Skp2-mediated degradation Cardiovasc Res. 2006 69 198 206 10.1016/j.cardiores.2005.08.020 16212951 

  35. 35. Quasnichka H Slater SC Beeching CA Boehm M Sala-Newby GB George SJ Regulation of smooth muscle cell proliferation by β-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression Circ Res. 2006 99 1329 37 10.1161/01.RES.0000253533.65446.33 17122440 

  36. 36. Qin LL Li XK Xu J Mo DL Tong X Pan ZC Mechano growth factor (MGF) promotes proliferation and inhibits differentiation of porcine satellite cells (PSCs) by down-regulation of key myogenic transcriptional factors Mol Cell Biochem. 2012 370 221 30 10.1007/s11010-012-1413-9 22875667 

  37. 37. Li J Han S Cousin W Conboy IM Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells Stem Cells. 2015 33 951 61 10.1002/stem.1908 25447026 

  38. 38. Golias CH Charalabopoulos A Charalabopoulos K Cell proliferation and cell cycle control: a mini review Int J Clin Pract. 2004 58 1134 41 10.1111/j.1742-1241.2004.00284.x 15646411 

  39. 39. Chakravarthy MV Abraha TW Schwartz RJ Fiorotto ML Booth FW Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/AKT signaling pathway J Biol Chem. 2000 275 35942 52 10.1074/jbc.M005832200 10962000 

  40. 40. Belal SA Sivakumar AS Kang DR Cho S Choe HS Shim KS Modulatory effect of linoleic and oleic acid on cell proliferation and lipid metabolism gene expressions in primary bovine satellite cells Anim Cells Syst. 2018 22 324 33 10.1080/19768354.2018.1517824 30460114 

  41. 41. Gabrielli B Brooks K Pavey S Defective cell cycle checkpoints as targets for anti-cancer therapies Front Pharmacol. 2012 3 9 10.3389/fphar.2012.00009 22347187 

  42. 42. Schmidt M Schüler SC Hüttner SS von Eyss B von Maltzahn J Adult stem cells at work: regenerating skeletal muscle Cell Mol Life Sci. 2019 76 2559 70 10.1007/s00018-019-03093-6 30976839 

  43. 43. Olguin HC Olwin BB Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal Dev Biol. 2004 275 375 88 10.1016/j.ydbio.2004.08.015 15501225 

  44. 44. Wen Y Bi P Liu W Asakura A Keller C Kuang S Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells Mol Cell Biol. 2012 32 2300 11 10.1128/MCB.06753-11 22493066 

  45. 45. Dumont NA Wang YX Rudnicki MA Intrinsic and extrinsic mechanisms regulating satellite cell function Development. 2015 142 1572 81 10.1242/dev.114223 25922523 

  46. 46. Zammit PS Relaix F Nagata Y Ruiz AP Collins CA Partridge TA Pax7 and myogenic progression in skeletal muscle satellite cells J Cell Sci. 2006 119 1824 32 10.1242/jcs.02908 16608873 

  47. 47. Day K Paterson B Yablonka‐Reuveni Z A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis Dev Dyn. 2009 238 1001 9 10.1002/dvdy.21903 19301399 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로