최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기융합정보논문지 = Journal of Convergence for Information Technology, v.12 no.1, 2022년, pp.39 - 44
홍석미 (상지대학교 교양대학) , 선경희 (경기대학교 콘텐츠융합소프트웨어연구소) , 유현 (경기대학교 콘텐츠융합소프트웨어연구소)
The purpose of this study is to extract the type, location, and absolute size of an object in an image using a deep learning algorithm, predict the relative distance between objects, and use this to detect contact between objects. To analyze the size ratio of objects, YOLO, a CNN-based object detect...
K. He, X. Zhang, S. Ren & J. Sun. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
J. Long, E. Shelhamer & T. Darrell. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).
R. Huang, J. Pedoeem & C. Chen. (2018). YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 2503-2510). IEEE.
M. Tan & Q. Le. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105-6114). PMLR.
H. Nguyen, L. M. Kieu, T. Wen & C. Cai. (2018). Deep learning methods in transportation domain: a review. IET Intelligent Transport Systems, 12(9), 998-1004.
P. W. Khan, Y. C. Byun & N. Park. (2020). A data verification system for CCTV surveillance cameras using blockchain technology in smart cities. Electronics, 9(3), 484. DOI : 10.3390/electronics9030484
M. J. Shafiee, B. Chywl, F. Li & A. Wong. (2017). Fast YOLO: A fast you only look once system for real-time embedded object detection in video. arXiv Prepr. arXiv1709.05943.
L. Liu et al. (2020). Deep Learning for Generic Object Detection: A Survey. International journal of computer vision, 128(2), 261-318.
Y. C. Ahn & Y. H. Lee. (2019). A Research of CNN based Object Detection for Multiple Object Tracking in Image. Journal of the Semiconductor & Display Technology, 18(3), 110-114.
P. Wang et al. (2018). Understanding convolution for semantic segmentation. In 2018 IEEE winter conference on applications of computer vision (WACV), 1451-1460.
M. Yang, K. Yu, C. Zhang, Z. Li & K. Yang. (2018). Denseaspp for semantic segmentation in street scenes. in Proceedings of the IEEE conference on computer vision and pattern recognition, 3684-3692.
A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez & J. Garcia-Rodriguez. (2017). A review on deep learning techniques applied to semantic segmentation. arXiv Prepr. arXiv1704.06857.
T. Y. Lin et al. (2014). Microsoft coco: Common objects in context. In European conference on computer vision, 740-755.
National Information Society Agency. (2021). AI Hub. National Information Society Agency(Online). https://aihub.or.kr
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.