$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

연료전지용 음이온교환막에서 그래핀 유도체의 역할: 최근 동향
Role of Graphene Derivatives in Anion Exchange Membrane for Fuel Cell: Recent Trends 원문보기

멤브레인 = Membrane Journal, v.32 no.6, 2022년, pp.411 - 426  

마노즈 카라코티 (경상대학교 그린에너지융합연구소(RIGET)) ,  남상용 (경상대학교 그린에너지융합연구소(RIGET))

초록
AI-Helper 아이콘AI-Helper

다양한 장치에 대한 광범위한 의존으로 에너지는 현대 생활에서 중요한 역할을 하고 있다. 전통적인 에너지원은 많은 환경 및 건강 문제를 안고 있어, 환경과 건강에 미치는 영향을 최소화하면서 에너지 수요를 충족할 수 있는 대체 가능한 에너지원이 시급히 필요하다. 이러한 관점에서 연료전지, 특히 음이온 교환막 연료전지는 고가의 촉매를 사용하지 않는 빠른 반응속도, 컴팩트한 디자인, 수소 이외의 연료 선택 가능성 및 보다 저렴한 연료의 사용이 가능한 특성으로 인하여 다른 연료전지에 비해 큰 주목을 받고 있다. 그럼에도 이온전도성이 높고 화학적, 기계적으로 안정적인 음이온 교환막의 개발이 부진한 것이 주요 장애물이 되어 왔고, 그래핀 기반 고분자 복합막이 AEMFC용 전해질막으로 등장하게 되었다. 2D 구조, 높은 기계적 강도, 높은 내화학성 및 표면적과 같은 그래핀의 견고한 구조 및 물리적 특성은 음이온교환막의 성능 개선에 도움이 된다고 보고되고, 그래핀 및 그 유도체를 사용하는 전해질막의 연구가 중요하게 되었으나, 그래핀 재료의 높은 잠재력에도 지나친 응집 경향으로 나타나는 문제점이 지적되고 있어 그래핀 유도체의 표면 개질은 응집을 완화하고 그래핀이 가지는 잠재적 성능을 이끌어내는데 꼭 필요하다. 따라서 본 고에서는 그래핀과 유도체의 표면 개질과 연료 전지용 AEM 제조에서 그 역할에 초점을 맞추어서 논의하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Energy plays a significant role in modern lifestyle because of our extensive reliance over energy-operating devices. Therefore, there is a need for alternative and green energy resources that can fulfill the energy demand. For this, fuel cell (FCs) especially anion exchange membrane fuel cells (AEMF...

주제어

참고문헌 (86)

  1. T. Wilberforce, Z. El-Hassan, F. N. Khatib, A. Makky, A. Baroutaji, J. G. Carton, and A. G. Olabi, "Developments of electric cars and fuel cell hydrogen electric cars", Int. J. Hydrog. Energy, 42, 25695 (2017). 

  2. M. Geraldine, W. Matthias, and N. Kitty, "Anion exchange membranes for alkaline fuel cells: A review", J. Membr. Sci., 377, 1 (2011). 

  3. M. Warshay and P. R. Prokopius, "The fuel cell in space: yesterday, today and tomorrow", In: Grove Anniversary (1839-1989) Fuel Cell Symposium (No. E-5084), (1989). 

  4. T. B. Ferriday and P. H. Middleton, "Alkaline fuel cell technology-A review", Int. J. Hydrog. Energy, 46, 18489 (2021). 

  5. E. Gulzow and M. Schulze, "Long-term operation of AFC electrodes with CO 2 containing gases", J. Power Sources, 127, 243 (2004). 

  6. M. Schulze and E. Gulzow, "Degradation of nickel anodes in alkaline fuel cells", J. Power Sources, 127, 252 (2004). 

  7. G. Das, J. H. Choi, P. K. T. Nguyen, D. J. Kim, and Y. S. Yoon, "Anion exchange membranes for fuel cell application: A Review", Polymers, 14, 1197 (2022). 

  8. X. Cheng, Z, Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z. S. Liu, H. Wang, and J. Shen, "A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation", J. Power Sources, 165, 739-756 (2007). 

  9. M. G. Marino and K. D. Kreuer, "Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids", ChemSusChem., 8, 513-523 (2015). 

  10. R. Narducci, E. Sgreccia, P. Knauth, and M. L. Di Vona, "Anion exchange membranes with 1D, 2D and 3D fillers: A review", Polymers, 13, 3887 (2021) 

  11. V. Elumalai and D. Sangeetha, "Preparation of anion exchangeable titanate nanotubes and their effect on anion exchange membrane fuel cell", Mater. Des., 154, 63 (2018). 

  12. W. H. Pan, S. J. Lue, C. M. Chang, and Y. L Liu, "Alkali doped polyvinyl alcohol/multi-walled carbon nano-tube electrolyte for direct methanol alkaline fuel cell", J. Membr. Sci., 376, 225 (2011). 

  13. S. J. Lue, W. H. Pan, C. M. Chang, and Y. L Liu, "High-performance direct methanol alkaline fuel cells using potassium hydroxideimpregnated polyvinyl alcohol/carbon nano-tube electrolytes", J. Power Sources, 202, 1 (2012). 

  14. T. Zhou, M. Wang, X. He, and J. Qiao, "Poly(vinyl alcohol)/Poly(diallyldimethylammonium chloride) anion-exchange membrane modified with multiwalled carbon nanotubes for alkaline fuel cells", J. Mater., 5, 286 (2019). 

  15. X. Zhang, C. Fan, N. Yao, P. Zhang, T. Hong, C. Xu, and J. Cheng, "Quaternary Ti3C2Tx enhanced ionic conduction in quaternized polysulfone membrane for alkaline anion exchange membrane fuel cells", J. Membr. Sci., 563, 882 (2018). 

  16. L. Wang and B. Shi, "Hydroxide conduction enhancement of chitosan membranes by functionalized MXene", Materials, 11, 2335 (2018). 

  17. Y. S. Ye, M. Y. Cheng, X. L. Xie, J. Rick, Y. J. Huang, F. C. Chang, and B. J. Hwang, "Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells", J. Power Sources, 239, 424 (2013). 

  18. J. M. Yang and S. A Wang, "Preparation of graphene-based poly(vinyl alcohol)/chitosan nanocomposites membrane for alkaline solid electrolytes membrane", J. Membr. Sci., 477, 49 (2015). 

  19. P. P. Sharma, S. Gahlot, B. M. Bhil, H. Gupta, and V. Kulshrestha, "An environmentally friendly process for the synthesis of an fGO modified anion exchange membrane for electro-membrane applications", RSC Adv., 5, 38712 (2015). 

  20. Z. Zakaria, S. K. Kamarudin, and S. N. Timmiati, "Influence of graphene oxide on the ethanol permeability and ionic conductivity of QPVA-based membrane in passive alkaline direct ethanol fuel cells", Nanoscale Res. Lett., 14, 1 (2019). 

  21. W. T. Ma, S. R. Kumar, C. T. Hsu, C. M. Shih, S. W. Tsai, C. C. Yang, Y. L. Liu, and S. J. Lue, "Magnetic field-assisted alignment of graphene oxide nanosheets in a polymer matrix to enhance ionic conduction", J. Membr. Sci., 563, 259 (2018). 

  22. Y. Bai, Y. Yuan, L. Miao, and C. Lu, "Functionalized rGO as covalent crosslinkers for constructing chemically stable polysulfone-based anion exchange membranes with enhanced ion conductivity", J. Membr. Sci., 570, 481 (2018). 

  23. Y. Yuan, B. Hu, C. Tong, Y. Bai, and C. Lu, "Novel quaternized carbon dots modified polysulfone-based anion exchange membranes with improved performance", Int. J. Hydrog. Energy, 44, 22181 (2019). 

  24. V. Yadav, S. K. Raj, N. H. Rathod, and V. Kulshrestha, "Polysulfone/graphene quantum dots composite anion exchange membrane for acid recovery by diffusion dialysis", J. Membr. Sci., 611, 118331 (2020). 

  25. P. B. Ingabire, X. Pan, A. Haragirimana, N. Li, Z. Hu, and S. Chen, "Enhanced conduction capability of nanocomposite membrane of quaternized poly (arylene ether sulfone)s covalently bonded with graphitic carbon nitride nanosheets for fuel cells", React. Funct. Polym., 144, 104260 (2019). 

  26. Y. Lu, X. Pan, N. Li, Z. Hu, and S. Chen, "Improved performance of quaternized poly(arylene ether ketone)s/graphitic carbon nitride nanosheets composite anion exchange membrane for fuel cell applications", Appl. Surf. Sci., 503, 144071 (2019). 

  27. N. H. Rathod, V. Yadav, A. Rajput, J. Sharma, D. Shukla, and V. Kulshrestha, "New class of composite anion exchange membranes based on Quaternized poly (phenylene oxide) and functionalized boron nitride", Colloid Interface Sci. Commun., 36, 100265 (2020). 

  28. E. Sgreccia, R. Narducci, P. Knauth, and M. Di Vona, "Silica containing composite anion exchange membranes by Sol-gel synthesis: A short review", Polymers, 13, 1874 (2021). 

  29. X. Zuo, S. Yu, X. Xu, J. Xu, R. Bao, and X. Yan, "New PVDF organic-inorganic membranes: The effect of SiO 2 nanoparticles content on the transport performance of anion-exchange membranes", J. Membr. Sci., 340, 206-213 (2009). 

  30. E. D. Wang, T. S. Zhao, and W. W. Yang, "Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells", Int. J. Hydrog. Energy, 35, 2183 (2010). 

  31. S. R. Kumar, C. H. Juan, G. M. Liao, J. S. Lin, C. C. Yang, W. T. Ma, J. H. You, and S. J. Lue, "Fumed silica nanoparticles incorporated in quaternized poly(vinyl alcohol) nanocomposite membrane for enhanced power densities in direct alcohol alkaline fuel cells", Energies, 9, 15 (2015). 

  32. C. C. Yang, S. J. Chiu, W. C. Chien, and S. S. Chiu, "Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells", J. Power Sources, 195, 2212 (2010). 

  33. M. T. Perez-Prior, T. Garcia-Garcia, A. Varez, and B. Levenfeld, "Preparation and characterization of ammonium-functionalized polysulfone/Al 2 O 3 composite membranes", J. Mater. Sci., 50, 5893 (2015). 

  34. R. Vinodh, M. Purushothaman, and D. Sangeetha, "Novel quaternized polysulfone/ZrO 2 composite membranes for solid alkaline fuel cell applications", Int. J. Hydrog. Energy, 36, 7291 (2011). 

  35. K. Rambabu, G. Bharath, A. F. Arangadi, S. Velu, B. Fawzi, and P. L. Show, "ZrO 2 incorporated polysulfone anion exchange membranes for fuel cell applications", Int. J. Hydrog. Energy, 45, 29668 (2020). 

  36. X. C. Jiang; Y. J. Sun, H. X. Zhang, and L. X. Hou, "Preparation and characterization of quaternized poly(vinyl alcohol)/chitosan/MoS 2 composite anion exchange membranes with high selectivity", Carbohydr. Polym., 180, 96 (2018). 

  37. P. Y. Hsu, T. Y. Hu, S. R. Kumar, C. H. Chang, K. C. W. Wu, K. L. Tung, and S. J. Lue, "Highly zeolite-loaded polyvinyl alcohol composite membranes for alkaline fuel-cell electrolytes", Polymers, 10, 102 (2018). 

  38. B. Wu, L. Ge, D. Yu, L. Hou, Q. Li, Z. Yang, and T. Xu, "Cationic metal-organic framework porous membranes with high hydroxide conductivity and alkaline resistance for fuel cells", J. Mater. Chem. A, 4, 14545 (2016). 

  39. K. H. Lee and D. J. Yoo, "Effect of silicotungstic acid as inorganic filler on the properties of anion exchange composite membranes", KHNES, 33, 28 (2022). 

  40. M. Karakoti, S. Pandey, R. Jangra, P. S. Dhapola, P. K. Singh, S. Mahendia, A. Abbas, and N. G. Sahoo, "Waste plastics derived graphene nanosheets for supercapacitor application", Mater. Manuf. Process., 36, 171-177 (2021). 

  41. Y. Hu and X. Sun, "Chemically functionalized graphene and their applications in electrochemical energy conversion and storage", In: Advances in Graphene Science, pp. 161, Intechopen, Rijeka, Croatia (2013). 

  42. M. Karakoti, R. Jangra, S. Pandey, P. S. Dhapola, S. Dhali, S. Mahendia, P. K. Singh, and N. G. Sahoo, "Spray dryer processed graphene oxide/reduced graphene oxide for high-performance supercapacitor", Int. J. Appl. Ceram. Technol., 17, 1899 (2020). 

  43. A. K. Geim, "Graphene: status and prospects", Science, 324, 1530 (2009). 

  44. L. Cseri, J. Baugh, A. Alabi, A. AlHajaj, L. Zou, R. A. Dryfe, P. M. Budd, and G. Szekely, "Graphene oxide - polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis", J. Mater. Chem. A, 6, 24728 (2018). 

  45. Z. Baig, O. Mamat, and M. Mustapha, "Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: a review", Crit. Rev. Solid State Mater. Sci., 43, 1 (2018). 

  46. M. Karakoti, S. Dhali, S. Rana, S. R. V. S. Prasanna, S. P. S. Mehta, and N. G. Sahoo, "Surface modification of carbon-based nanomaterials for polymer nanocomposites", In: Carbon-based polymer nanocomposites for environmental and energy applications, pp. 27-56, Elsevier, Hampshire, Cambridge, USA (2018). 

  47. P. Goel, E. Bhuvanesh, P. Mandal, V. K. Shahi, A. Bandyopadhyay, and S. Chattopadhyay, "Diquaternized graphene oxide based multi-cationic cross-linked monovalent selective anion exchange membrane for electrodialysis", Sep. Purif. Technol., 276, 119361 (2021). 

  48. S. Changkhamchom, P. Kunanupatham, K. Phasuksom, and A. Sirivat, "Anion exchange membranes composed of quaternized polybenzimidazole and quaternized graphene oxide for glucose fuel cell", Int. J. Hydrog. Energy, 46, 5642 (2021). 

  49. F. Karlicky, K. R. K. Datta, M. Otyepka, and R. Zboril, "Halogenated graphenes: rapidly growing family of graphene derivatives", ACS Nano, 7, 6434 (2013). 

  50. M. Quintana, E. Vazquez, and M. Prato, "Organic functionalization of graphene in dispersions", Acc. Chem. Res., 46, 138 (2013). 

  51. P. Di Pietro, G. Forte, R. Snyders, C. Satriano, C. Bittencourt, and D. Thiry, "Sulphur functionalizion of graphene oxide by radiofrequency plasma", Plasma Processes Polym., 17, 2000039 (2020). 

  52. S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Synthesis and exfoliation of isocyanatetreated graphene oxide nanoplatelets", Carbon, 44, 3342 (2006). 

  53. I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, "Composites with carbon nanotubes and graphene: an outlook", Science, 362, 547 (2018). 

  54. Y. Feng, H. Liu, W. Luo, E. Liu, N. Zhao, K. Yoshino, and W. Feng, "Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage", Sci. Rep., 3, 3260 (2013). 

  55. B. Lin, H. Shang, F. Chu, Y. Ren, N. Yuan, B. Jia, S. Zhang, X. Yu, Y. Wei, and J. Ding, "Ionic liquid-tethered graphene oxide/ionic liquid electrolytes for highly efficient dye sensitized solar cells", Electrochim. Acta, 134, 209 (2014). 

  56. C. Wang, B. Lin, G. Qiao, L. Wang, L. Zhu, F. Chu, T. Feng, N. Yuan, and J. Ding, "Polybenzimidazole/ionic liquid functionalized graphene oxide nanocomposite membrane for alkaline anion exchange membrane fuel cells", Mater. Lett., 173, 219 (2016). 

  57. S. Guo, J. Raya, D. Ji, Y. Nishina, C. MenardMoyon, and A. Bianco, "Is carboxylation an efficient method for graphene oxide functionalization?", Nanoscale Advances, 2, 4085 (2020). 

  58. C. Wang, Q. Yan, H. B. Liu, X. H. Zhou, and S. J. Xiao, "Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions", Langmuir, 27, 12058 (2011). 

  59. Y. Lu, L. Liu, Y. Pu, Y. Liu, N. Li, Z. Hu, and S. Chen, "Towards performance improved anion exchange membrane: Cross-linking with multi-cations oligomer modified graphene oxide", Int. J. Hydrog. Energy, 46, 23855 (2021). 

  60. J. A, Staser and C. Movil, "Ionic liquid-functionalized graphene oxide-based nanocomposite anion exchange membrane", US Patent: US 20190044169A1, February 7 (2019). 

  61. S. Liu, D. Li, L. Wang, H. Yang, X. Han, and B. Liu, "Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery", Electrochim. Acta, 230, 204 (2017). 

  62. C. Long, C. Lu, Y. Li, Z. Wang, and H. Zhu, "N-spirocyclic ammonium-functionalized graphene oxide-based anion exchange membrane for fuel cells", Int. J. Hydrog. Energy, 45, 19778 (2020). 

  63. G. Shukla and V. K. Shahi, "Amine functionalized graphene oxide containing C16 chain grafted with poly (ether sulfone) by DABCO coupling: Anion exchange membrane for vanadium redox flow battery", J. Membr. Sci., 575, 109 (2019). 

  64. T. A. Strom, E. P. Dillon, C. E. Hamilton, and A. R. Barron, "Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene", Chem. Commun., 46, 4097 (2010). 

  65. J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang, and J. M. Tour, "Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets", J. Am. Chem. Soc., 130, 16201 (2008). 

  66. V. Georgakilas, A. B. Bourlinos, R. Zboril, T. A. Steriotis, P. Dallas, A. K. Stubos, and C. Trapalis, "Organic functionalisation of graphenes", Chem. Commun., 46, 1766 (2010). 

  67. E. Bekyarova, M. Itkis, and P. Ramesh, "Chemical modification of expitaxial graphene: spontaneous grafting of aryl groups", J. Am. Chem. Soc., 131, 1336 (2008). 

  68. A. Sinitskii, A. Dimiev, and D. Corley, "Kinetics of diazonium functionalization of chemically converted graphene nanoribbons", ACS Nano, 4, 1949 (2010). 

  69. H. He and C. Gao, "General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry", Chem. Mater., 22, 5054, (2010). 

  70. O. Movil, L. Frank, and J. A. Staser, "Graphene oxide-polymer Nanocomposite anion-exchange membranes", J. Electrochem. Soc., 162, F419 (2015). 

  71. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes", Compos. B. Eng., 164, 324 (2019). 

  72. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", J. Membr. Sci., 611, 118385 (2020). 

  73. X. Mao, Z. Li, G. He, Z. Li, J. Zhao, Y. Zhang, and Z. Jiang, "Enhancing hydroxide conductivity of anion exchange membrane via incorporating densely imidazolium functionalized graphene oxide", Solid State Ion., 333, 83 (2019). 

  74. D. Zhang, S. Xu, R. Wan, Y. Yang, and R. He, "Functionalized graphene oxide cross-linked poly (2, 6-dimethyl-1, 4-phenylene oxide)-based anion exchange membranes with superior ionic conductivity", J. Power Sources, 517, 230720 (2022). 

  75. B. Hu, L. Miao, Y. Zhao, and C. Lu, "Azide-assisted crosslinked quaternized polysulfone with reduced graphene oxide for highly stable anion exchange membranes", J. Membr. Sci., 530, 84 (2017). 

  76. D. Dong, M. Zhang, Y. Xiao, Z. Yang, K. Wang, and M. Fan, "Quaternized branched polyethyleneimine modified nitrogen-doped graphene quantum dots/ quaternized polysulfone composite anion exchange membranes with improved performance", Macromol. Mater. Eng., 307, 2100787 (2022). 

  77. A. Sinitskii, A. Dimiev, D. A. Corley, A. A. Fursina, D. V. Kosynkin, and J. M. Tour, "Kinetics of diazonium functionalization of chemically converted graphene nanoribbons", ACS Nano, 4, 1949 (2010). 

  78. W. Lu, G. Ruan, B. Genorio, Y. Zhu, B. Novosel, Z. Peng, and J. M. Tour, "Functionalized graphene nanoribbons via anionic polymerization initiated by alkali metal-intercalated carbon nanotubes", ACS Nano, 7, 2669 (2013). 

  79. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", Nature, 458, 872 (2009). 

  80. C. Xiang, N. Behabtu, Y. Liu, H. G. Chae, C. C. Young, B. Genorio, D. E. Tsentalovich, C. Zhang, D. V. Kosynkin, and J. R. Lomeda, "Graphene nanoribbons as an advanced precursor for making carbon fiber", ACS Nano, 7, 1628 (2013). 

  81. C. Wang, H. Gao, H. Li, Y. Zhang, B. Huang, J. Zhao, Y. Zhu, W. Z. Yuan, and Y. Zhang, "Graphene nanoribbons hybridized carbon nanofibers: remarkably enhanced graphitization and conductivity, and excellent performance as support material for fuel cell catalysts", Nanoscale, 6, 1377 (2014). 

  82. X. Liu, X. Chen, Y. Hu, T. Gong, H. Li, and Y. Zhang, "Ionic-liquid-functionalized graphene nanoribbons for anion exchange membrane fuel cells", J. Electrochem. Soc., 164, F433 (2017). 

  83. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly (arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustain. Chem. Eng., 9, 8824 (2021). 

  84. J. Chen, M. Guan, K. Li, and S. Tang, "High-performance COF-based composite anion exchange membrane sandwiched by GO layers for alkaline H 2 /O 2 fuel cell application", J. Ind. Eng. Chem., 104, 136 (2021). 

  85. J. Calderon, N. Huq, Y. Zhou, M. Zheng, A. Raut, H. Fang, M. Rafailovich, and M. R. Isseroff, "Power enhancement of anion exchange membrane fuel cells (AEMFCs) through spray-coating of membrane with partially reduced graphene oxide", J. Undergrad. Chem. Eng. Res., 75 (2022). 

  86. T. Bayer, B. V. Cunning, R. Selyanchyn, T. Daio, M. Nishihara, S. Fujikawa, K. Sasaki, and S. M. Lyth, "Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide", J. Membr. Sci., 508, 51 (2016). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로