$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고분자 전해질 막 연료전지 응용을 위한 탄화수소계 고분자 전해질 막의 물성 향상에 관한 연구동향
Research Trends on Improvement of Physicochemical Properties of Sulfonated Hydrocarbon Polymer-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications 원문보기

멤브레인 = Membrane Journal, v.32 no.6, 2022년, pp.427 - 441  

황인혁 (경상국립대학교 나노신소재융합공학과) ,  최다빈 (경상국립대학교 나노.신소재공학부) ,  김기현 (경상국립대학교 나노신소재융합공학과)

초록
AI-Helper 아이콘AI-Helper

고분자 전해질 막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)의 핵심 구성요소 중 하나인 고분자 전해질 막(polymer electrolyte membrane, PEM)은 수소이온을 애노드(anode)에서 캐소드(cathode)로 이동시키는 전해질의 역할 및 연료의 투과를 막는 분리막으로서의 역할을 수행하며 PEMFC의 성능 및 효율을 결정짓는 핵심 소재이다. 현재 나피온 (Nafion®)으로 대표되는 과불소화계 전해질 막이 높은 수소이온 전도도 및 화학적 안정성으로 인해 상용화 되었지만, 높은 생산비용과 구동 시 환경오염 물질이 배출된다는 문제점을 갖고 있다. 이를 대체할 PEM 소재로써 고분자의 구조 조절 및 개질 과정이 용이한 다양한 종류의 탄화수소계 고분자가 제시되고 있지만, 실제 PEMFC에 적용되기 위해서는 성능 및 내구 특성을 개선해야 하는 과제가 남아있다. 이에 본 총설은 탄화수소계 PEM의 성능 및 내구 특성을 향상시키기 위해 1) 가교 구조를 도입한 가교 막 개발, 2) 무기 첨가제 도입을 통한 유⋅무기 복합 막 개발 및 3) 다공성 지지체를 활용한 강화 복합막을 개발하는 연구에 대해 살펴보고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Polymer electrolyte membrane (PEM) serving as a separator that can prevent the permeation of unreacted fuels as well as an electrolyte that selectively transports protons from the anode to the cathode has been considered a key component of polymer electrolyte membrane fuel cell (PEMFC). The perfluor...

주제어

참고문헌 (78)

  1. W. R. W. Daud, R. E. Rosli, E. H. Majlan, S. A. A. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energ., 113, 620 (2017). 

  2. J. Graetz, "New approaches to hydrogen storage", Chem. Soc. Rev., 38, 73 (2009). 

  3. F. Qureshi, M. Yusuf, H. Kamyab, D.-V. N. Vo, S. Chelliapan, S.-W. Joo, and Y. Vasseghian, "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives", Renew. Sust. Energ. Rev., 168, 112916 (2022). 

  4. S. Erce, H. Erdener, R. G. Akay, H. Yucel, N. Bac, and I. Eroglu, "Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance", Int. J. Hydrog. Energy., 34, 4645 (2009). 

  5. R. K. Shah, U. Desideri, K.-L. Hsueh, and A. V. Vikar, "Research opportunities and challenges in fuel cell science and engineering", in Proceedings of the 4th Baltic Heat Transfer Conference, Kaunas, Lithuania (2003). 

  6. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, and D. Wood, "Scientific aspects of polymer electrolyte fuel cell durability and degradation", Chem. Rev., 107, 3904 (2007). 

  7. S. J. Hamrock and M. A. Yandrasits, "Proton exchange membranes for fuel cell applications", Polym. Rev., 46, 219 (2006). 

  8. P. C. Okonkwo, I. B. Belgacem, W. Emori, and P. C. Uzoma, "Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review", Int. J. Hydrog. Energy., 46, 27956 (2021). 

  9. K. A. Mauritz and R. B. Moore, "State of understanding of Nafion", Chem. Rev., 104, 4535 (2004). 

  10. H. Ko, M. Kim, S. Y. Nam, and K. Kim, "Research of Cross-linked Hydrocarbon based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications", Membr. J., 30, 395 (2020). 

  11. Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly (arylene ether sulfone) s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026 (2006). 

  12. P. P. Sharma, V. D. C. Tinh, and D. Kim, "Enhanced ion cluster size of sulfonated poly (arylene ether sulfone) for proton exchange membrane fuel cell application", Polymers, 13, 1111 (2021). 

  13. J. E. Park, J. Kim, J. Han, K. Kim, S. Park, S. Kim, H. S. Park, Y.-H. Cho, J.-C. Lee, and Y.-E. Sung, "High-performance proton-exchange membrane water electrolysis using a sulfonated poly (arylene ether sulfone) membrane and ionomer", J. Membr. Sci., 620, 118871 (2021). 

  14. M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications", Polymers, 13, 3520 (2021). 

  15. G. Wei, L. Xu, C. Huang, and Y. Wang, "SPE water electrolysis with SPEEK/PES blend membrane", Int. J. Hydrog. Energy., 35, 7778 (2010). 

  16. C. Klose, T. Saatkamp, A. Munchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K. D. Kreuer, and S. Vierrath, "All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency", Adv. Energy Mater., 10, 1903995 (2020). 

  17. K. Kim, P. Heo, T. Ko, and J.-C. Lee, "Semi-interpenetrating network electrolyte membranes based on sulfonated poly (arylene ether sulfone) for fuel cells at high temperature and low humidity conditions", Electrochem. Commun., 48, 44 (2014). 

  18. M.S. Jung, T.-H. Kim, Y. J. Yoon, C. G. Kang, D. M. Yu, J. Y. Lee, H.-J. Kim, and Y. T. Hong, "Sulfonated poly (arylene sulfone) multiblock copolymers for proton exchange membrane fuel cells", J. Membr. Sci., 459, 72 (2014). 

  19. Y. Yin, O. Yamada, K. Tanaka, and K.-I. Okamoto, "On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications", Polym. J., 38, 197 (2006). 

  20. X. Pu, Y. Duan, J. Li, C. Ru, and C. Zhao, "Understanding of hydrocarbon ionomers in catalyst layers for enhancing the performance and durability of proton exchange membrane fuel cells", J. Power Sources, 493, 229671 (2021). 

  21. J. Peron, Z. Shi, and S. Holdcroft, "Hydrocarbon proton conducting polymers for fuel cell catalyst layers", Energy Environ Sci, 4, 1575 (2011). 

  22. L. Li and Y. Wang, "Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell", J. Membr. Sci., 246, 167 (2005). 

  23. B. Yang and A. Manthiram, "Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cells", Electrochem. Solid-State Lett., 6, A229 (2003). 

  24. T. Ko, K. Kim, B.-K. Jung, S.-H. Cha, S.-K. Kim, and J.-C. Lee, "Cross-linked sulfonated poly (arylene ether sulfone) membranes formed by in situ casting and click reaction for applications in fuel cells", Macromolecules, 48, 1104 (2015). 

  25. Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, W. Harrison, T. A. Zawodzinski, and J. E. McGrath, "Effect of acidification treatment and morphological stability of sulfonated poly (arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100 ℃", J. Polym. Sci., Part B: Polym. Phys., 41, 2816 (2003). 

  26. J. Han, K. Kim, S. Kim, H. Lee, J. Kim, T. Ko, J. Bae, W. J. Choi, Y.-E. Sung, and J.-C. Lee, "Cross-linked sulfonated poly (ether ether ketone) membranes formed by poly (2, 5-benzimidazole)-grafted graphene oxide as a novel cross-linker for direct methanol fuel cell applications", J. Power Sources, 448, 227427 (2020). 

  27. Harilal, R. Nayak, P. C. Ghosh, and T. Jana, "Cross-linked polybenzimidazole membrane for PEM fuel cells", ACS Appl. Polym. Mater., 2, 3161 (2020). 

  28. S. Ryu, B. Lee, J. H. Kim, C. Pak, and S. H. Moon, "High-temperature operation of PEMFC using pore-filling PTFE/Nafion composite membrane treated with electric field", Int. J. Energy Res., 45, 19136 (2021). 

  29. H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, and H. Na, "Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance", J. Membr. Sci., 308, 66 (2008). 

  30. L. Li, J. Zhang, and Y. Wang, "Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell", J. Membr. Sci., 226, 159 (2003). 

  31. D. M. Xing, B. L. Yi, F. Q. Liu, Y. Z. Fu, and H. M. Zhang, "Characterization of Sulfonated Poly (Ether Ether Ketone)/Polytetrafluoroethylene Composite Membranes for Fuel Cell Applications", Fuel Cells, 5, 406 (2005). 

  32. H. Hou, B. Maranesi, J.-F. Chailan, M. Khadhraoui, R. Polini, M. L. Di Vona, and P. Knauth, "Crosslinked SPEEK membranes: Mechanical, thermal, and hydrothermal properties", J. Mater. Res., 27, 1950 (2012). 

  33. J. Qiao, T. Hamaya, and T. Okada, "New highly proton-conducting membrane poly(vinylpyrrolidone) (PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs)", Polymer, 46, 10809 (2005). 

  34. H. S. Byun, K. S. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, and Y. T. Hong, "Fabrication and Characteristics of Partially Covalent-crosslinked Poly(arylene ether sulfone)s for Use in a Fuel Cell", Membr. J., 18, 274 (2008). 

  35. H. Li, G. Zhang, J. Wu, C. Zhao, Y. Zhang, K. Shao, M. Han, H. Lin, J. Zhu, and H. Na, "A novel sulfonated poly(ether ether ketone) and crosslinked membranes for fuel cells", J. Power Sources, 195, 6443 (2010). 

  36. K. S. Lee, M.-H. Jeong, J.-P. Lee, and J.-S. Lee, "End-group cross-linked poly(arylene ether) for proton exchange membranes", Macromolecules, 42, 584 (2009). 

  37. N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee, D. H. Cho, J. H. Kim, and Y. M. Lee, "Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes", J. Power Sources, 307, 834 (2016). 

  38. K. Kim, P. Heo, J. Han, J. Kim, and J.-C. Lee, "End-group cross-linked sulfonated poly(arylene ether sulfone) via thiol-ene click reaction for high-performance proton exchange membrane", J. Power Sources, 401, 20 (2018). 

  39. J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 3 (2001). 

  40. J. V. Gasa, R. A. Weiss, and M. T. Shaw, "Ionic crosslinking of ionomer polymer electrolyte membranes using barium cations", J. Membr. Sci., 304, 173 (2007). 

  41. J. Kerres, C.-M. Tang, and C. Graf, "Improvement of properties of poly(ether ketone) ionomer membranes by blending and cross-linking", Ind. Eng. Chem. Res, 43, 4571 (2004). 

  42. S. J. Oh, "A Study on the Properties of sPEEK Electrolytic Membranes using Physical Crosslinking", Journal of Korea Academia-Industrial cooperation Society, 17, 433 (2016). 

  43. I. Y. jang, D. Y. Jang, O. H. Kwon, K. E. Kim, G. J. Hwang, K. S. Sim, K. K. Bae, and A. S. Kang, "Cross-linking of acid-base composite solid polymer electrolyte membranes with PEEK and PSf", Transactions of the Korean Hydrogen and New Energy Society, 17, 149 (2006). 

  44. N. S. Kwak, E. J. Choi, and T. S. Hwang, "Preparation and properties of sulfonated poly(ether ether ketone) (SPEEK) electrospun nanofibrous ion-exchange membrane for PEMFC", Polymer, 36, 155 (2012). 

  45. F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount", RSC Adv., 2, 1547 (2012). 

  46. P. Salarizadeh, M. Javanbakht, and S. Pourmahdian, "Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO 2 nanoparticles with proton hopping sites", RSC Adv., 7, 8303 (2017). 

  47. S. Sambandam and V. Ramani, "SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells", J. Power Sources, 170, 259 (2007). 

  48. Z. Jiang, X. Zhao, and A. Manthiram, "Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells", Int. J. Hydrog. Energy., 38, 5875 (2013). 

  49. M. L. Di Vona, E. Sgreccia, A. Donnadio, M. Casciola, J. F. Chailan, G. Auer, and P. Knauth, "Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO 2 ", J. Membr. Sci., 369, 536 (2011). 

  50. D. J. Kim and S. Y. Nam, "Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell", Membr. J., 22, 155 (2012). 

  51. H. Lade, V. Kumar, G. Arthanareeswaran, and A. F. Ismail, "Sulfonated poly(arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: A review", Int. J. Hydrog. Energy., 42, 1063 (2017). 

  52. Y. M. Kim, S. H. Choi, H. C. Lee, M. Z. Hong, K. Kim, and H.-I. Lee, "Organic-inorganic composite membranes as addition of SiO 2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs)", Electrochim. Acta, 49, 4787 (2004). 

  53. M. N. Kim, Y. W. Choi, T. Y. Kim, M. S. Lee, T. H. Yang, C. S. Kim, and K. S. Nam, "Characterization of sulfonated ploy(aryl ether sulfone) membranes impregnated with sulfated ZrO 2 ", Membr. J., 21, 30 (2011). 

  54. M. S. Shin, D. E. Kim, and J. S. Park, "Preparation and characterizations of poly(arylene ether sulfone)/SiO 2 composite membranes for polymer electrolyte fuel cell", Membr. J., 27, 182 (2017). 

  55. C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, and Y. M. Lee, "Sulfonated poly(arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC)", J. Membr. Sci., 303, 258 (2007). 

  56. G. Yun, S. K. Kim, and I. S. Bae, "Development of composite membranes of sulfonated poly(ether ether ketone) and gadolinium-doped ceria nanoparticles for polymer electrolyte membrane fuel cells", Polymer, 46, 179 (2022). 

  57. R. Kannan, H. N. Kagalwala, H. D. Chaudhari, U. K. Kharul, S. Kurungot, and V. K. Pillai, "Improved performance of phosphonated carbon nanotube-polybenzimidazole composite membranes in proton exchange membrane fuel cells", J. Mater. Chem., 21, 7223 (2011). 

  58. M. S. Shin, M. S. Kang, and J. S. Park, "Preparation and characterizations of sulfonated graphene oxide (sGO)/Nafion composite membranes for polymer electrolyte fuel cells", Membr. J., 27, 53 (2017). 

  59. J. I. Lee and H. T. Jung, "Technical status of carbon nanotubes composites", Korean Chem. Eng. Res, 46, 7 (2008). 

  60. N. Guerrero Moreno, D. Gervasio, A. Godinez Garcia, and J. F. Perez Robles, "Polybenzimidazolemultiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells", J. Power Sources, 300, 229 (2015). 

  61. H. Y. Jung, M. W. Kim, J. H. Lim, J. H. Choi, and S. H. Roh, "The effect of sGO content in sPEEK/sGO composite membrane for unitized regenerative fuel cell", KEPCO Journal on electric power and energy, 2, 127 (2016). 

  62. J.-R. Lee, J.-H. Won, N.-Y. Kim, M.-S. Lee, and S.-Y. Lee, "Hydrophilicity/porous structure-tuned, SiO2/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes", J. Colloid Interface Sci., 362, 607 (2011). 

  63. M. P. Rodgers, J. Berring, S. Holdcroft, and Z. Shi, "The effect of spatial confinement of Nafion(R) in porous membranes on macroscopic properties of the membrane", J. Membr. Sci., 321, 100 (2008). 

  64. L. Wang, B. Yi, H. Zhang, Y. Liu, D. Xing, Z.-G. Shao, and Y. Cai, "Sulfonated polyimide/PTFE reinforced membrane for PEMFCs", J. Power Sources, 167, 47 (2007). 

  65. T. Yamaguchi, F. Miyata, and S.-i. Nakao, "Porefilling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003). 

  66. H.-B. Song, J.-H. Park, J.-S. Park, and M.-S. Kang, "Pore-filled proton-exchange membranes with fluorinated moiety for fuel cell application", Energies, 14, 4433 (2021). 

  67. R. M. Penner and C. R. Martin, "Ion Transporting Composite Membranes. I. Nafion Impregnated Gore-Tex", J. Electrochem. Soc., 132, 514 (1985). 

  68. K.-H. Kim, S.-Y. Ahn, I.-H. Oh, H. Y. Ha, S.-A. Hong, M.-S. Kim, Y. Lee, and Y.-C. Lee, "Characteristics of the Nafion(R)-impregnated polycarbonate composite membranes for PEMFCs", Electrochim. Acta, 50, 577 (2004). 

  69. J. Shim, H. Y. Ha, S.-A. Hong, and I.-H. Oh, "Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells", J. Power Sources, 109, 412 (2002). 

  70. T. H. Nguyen, C. Wang, and X. Wang, "Pore-filling membrane for direct methanol fuel cells based on sulfonated poly (styrene-ran-ethylene) and porous polyimide matrix", J. Membr. Sci., 342, 208 (2009). 

  71. G.-C. Park and D. Kim, "Porous PTFE reinforced SPEEK proton exchange membranes for enhanced mechanical, dimensional, and electrochemical stability", Polymer, 218, 123506 (2021). 

  72. H. Tang, M. Pan, F. Wang, P. K. Shen, and S. P. Jiang, "Highly durable proton exchange membranes for low temperature fuel cells", J. Phys. Chem. B, 111, 8684 (2007). 

  73. T. Tezuka, K. Tadanaga, A. Matsuda, A. Hayashi, and M. Tatsumisago, "Utilization of glass paper as a support of proton conductive inorganic-organic hybrid membranes based on 3-glycidoxypropyltrimethoxysilane", Electrochem. Commun., 7, 245 (2005). 

  74. T. Nguyen and X. Wang, "Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells", J. Power Sources, 195, 1024 (2010). 

  75. K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017). 

  76. S.-H. Park, Y.-W. Choi, and J.-S. Park, "Characterization of sulfonated poly(styrene-copyrrolidone) pore-filling membranes for fuel cell applications", J. Appl. Electrochem., 41, 849 (2011). 

  77. S. Lu, R. Xiu, X. Xu, D. Liang, H. Wang, and Y. Xiang, "Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells", J. Membr. Sci., 464, 1 (2014). 

  78. X. Xu, H. Wang, S. Lu, Z. Guo, S. Rao, R. Xiu, nd Y. Xiang, "A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells", J. Power Sources, 286, 458 (2015). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로