$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고온 구동형 고분자 전해질 막 연료전지용 폴리벤즈이미다졸계 고분자 전해질 막의 개발 동향
Research Trends of Polybenzimidazole-based Polymer Electrolyte Membranes for High-temperature Polymer Electrolyte Membrane Fuel Cells 원문보기

멤브레인 = Membrane Journal, v.32 no.6, 2022년, pp.442 - 455  

이현경 (경상국립대학교 나노신소재융합공학과) ,  이가빈 (경상국립대학교 나노.신소재공학부) ,  김기현 (경상국립대학교 나노신소재융합공학과)

초록
AI-Helper 아이콘AI-Helper

고온 구동형 고분자 전해질 막 연료전지(high temperature polymer electrolyte membrane fuel cell, HT-PEMFC)는 전극의 빠른 활성과 피독 현상에 대한 높은 저항성으로 인해 저온 구동형 PEMFC의 대안으로 많은 연구가 진행되고 있다. 폴리벤즈이미다졸(polybenzimidazole, PBI)을 기반으로 한 PEM의 경우 고온 구동 조건에서 이온 전도성 물질과의 높은 상호 작용과 우수한 열적ㆍ기계적 안정성 특징으로 인해 HT-PEMFC용 PBI 기반 전해질 막 개발과 관련된 다양한 연구들이 진행되고 있다. 본 총설에서는 고성능/고내구성의 PBI 기반 PEM을 개발하기 위해 1) 인산 및 다양한 이온전도성 물질이 도핑된 PBI 막의 특성 분석과 막 제조법에 따른 PBI 막의 물성 비교에 관한 연구를 우선적으로 살펴본 후 2) 다공성 폴리테트라플루 오르에틸렌 지지체 및 무기 입자 혼입을 통한 PBI 복합 막의 성능 개선 연구 및 3) 고분자 블렌딩을 통해 가교 구조가 도입된 PBI 기반 가교 막의 내구성 향상에 관한 연구 동향에 대하여 소개하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has been studied as an alternative to low-temperature PEMFC due to its fast activation of electrodes and high resistance to electrode poisoning by carbon monoxide. It is highly required to develop stable PEMs operating at high temper...

주제어

참고문헌 (78)

  1. H. Ko, M. Kim, S. Y. Nam, and K. Kim, "Research of cross-linked hydrocarbon based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 30, 395-408 (2020). 

  2. D. Streimikiene and S. Girdzijauskas, "Assessment of post-Kyoto climate change mitigation regimes impact on sustainable development", Renew. Sust. Energ. Rev., 13, 129-141 (2009). 

  3. P. Agreement, "UNFCCC, Adoption of the Paris agreement. COP", 25th session Paris, 30, pp. 1-25 (2015). 

  4. H. P. Xu, X. H. Wen, and L. Kong, "High power DC-DC converter and fuel cell distributed generation system", Ieee Ind. Applic. Soc., 19, 1134-1139 (2004). 

  5. S. Mekhilef, R. Saidur, and A. Safari, "Comparative study of different fuel cell technologies", Renew Sust Energ Rev., 16, 981-989 (2012). 

  6. M. Miansari, K. Sedighi, M. Amidpour, E. Alizadeh, and M. Miansari, "Experimental and thermodynamic approach on proton exchange membrane fuel cell performance", J. Power Sources, 190, 356-361 (2009). 

  7. M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications", Polymers (Basel), 13, 3520 (2021). 

  8. K. Sopian and W. R. W. Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renew. Energy, 31, 719-727 (2006). 

  9. O. Ijaodola, Z. El-Hassan, E. Ogungbemi, F. Khatib, T. Wilberforce, J. Thompson, and A. Olabi, "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)", Energy, 179, 246-267 (2019). 

  10. J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, "An electrochemical-based fuel-cell model suitable for electrical engineering automation approach", IEEE Trans. Ind. Electron., 51, 1103-1112 (2004). 

  11. R. Rosli, A. Sulong, W. Daud, M. Zulkifley, T. Husaini, M. Rosli, E. Majlan, and M. Haque, "A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system", Int. J. Hydrog. Energy, 42, 9293-9314 (2017). 

  12. H. Zhang and P. K. Shen, "Recent development of polymer electrolyte membranes for fuel cells", Chem. Rev., 112, 2780-2832 (2012). 

  13. F. Mura, R. Silva, and A. Pozio, "Study on the conductivity of recast Nafion®/montmorillonite and Nafion®/TiO 2 composite membranes", Electrochim. Acta, 52, 5824-5828 (2007). 

  14. Y. Jeon, H.-k. Hwang, J. Park, H. Hwang, and Y.-G. Shul, "Temperature-dependent performance of the polymer electrolyte membrane fuel cell using short-side-chain perfluorosulfonic acid ionomer", Int. J. Hydrog. Energy, 39, 11690-11699 (2014). 

  15. H. Lee, M. Han, Y.-W. Choi, and B. Bae, "Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability", J. Power Sources, 295, 221-227 (2015). 

  16. T. Li, J. Shen, G. Chen, S. Guo, and G. Xie, "Performance comparison of proton exchange membrane fuel cells with nafion and aquivion perfluorosulfonic acids with different equivalent weights as the electrode binders", ACS Omega, 5, 17628-17636 (2020). 

  17. S. K. Das, A. Reis, and K. Berry, "Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell", J. Power Sources, 193, 691-698 (2009). 

  18. J. Baschuk and X. Li, "Carbon monoxide poisoning of proton exchange membrane fuel cells", Int. J. Energy Res., 25, 695-713 (2001). 

  19. K. Oh and H. Ju, "Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes", Int. J. Hydrog. Energy, 40, 7743-7753 (2015). 

  20. Q. Li, R. He, J.-A. Gao, J. O. Jensen, and N. J. Bjerrum, "The CO poisoning effect in PEMFCs operational at temperatures up to 200 C", J. Electrochem. Soc., 150, A1599 (2003). 

  21. C. Zhang, W. Zhou, M. M. Ehteshami, Y. Wang, and S. H. Chan, "Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation", Energy Convers. Manag., 105, 433-441 (2015). 

  22. S. Galbiati, A. Baricci, A. Casalegno, and R. Marchesi, "Degradation in phosphoric acid doped polymer fuel cells: A 6000 h parametric investigation", Int. J. Hydrog. Energy, 38, 6469-6480 (2013). 

  23. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C", Chem. Mater., 15, 4896-4915 (2003). 

  24. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-t. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Prog. Polym. Sci., 36, 813-843 (2011). 

  25. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Prog. Polym. Sci., 34, 449-477 (2009). 

  26. J.-T. Wang, R. Savinell, J. Wainright, M. Litt, and H. Yu, "A H 2 O 2 fuel cell using acid doped polybenzimidazole as polymer electrolyte", Electrochim. Acta, 41, 193-197 (1996). 

  27. J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid-doped polybenzimidazoles: a new polymer electrolyte", J. Electrochem. Soc., 142, L121 (1995). 

  28. R. Zeis, "Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells", Beilstein J. Nanotechnol., 6, 68-83 (2015). 

  29. L. K. Seng, M. S. Masdar, and L. K. Shyuan, "Ionic liquid in phosphoric acid-doped polybenzimidazole (PA-PBI) as electrolyte membranes for PEM fuel cells: A review", Membranes, 11, 728 (2021). 

  30. R. He, Q. Li, G. Xiao, and N. J. Bjerrum, "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors", J. Membr. Sci., 226, 169-184 (2003). 

  31. Z. Yue, Y.-B. Cai, and S. Xu, "Phosphoric acid-doped cross-linked sulfonated poly (imide-benzimidazole) for proton exchange membrane fuel cell applications", J. Membr. Sci., 501, 220-227 (2016). 

  32. K. S. Kumar and M. R. Prabhu, "Enhancing proton conduction of poly (benzimidazole) with sulfonated titania nano composite membrane for PEM fuel cell applications", Macromol. Res., 29, 111-119 (2021). 

  33. K. S. Lee, J. S. Spendelow, Y. K. Choe, C. Fujimoto, and Y. S. Kim, "An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs", Nat. Energy, 1, 1-7 (2016) 

  34. V. Atanasov, A. S. Lee, E. J. Park, S. Maurya, E. D. Baca, C. Fujimoto, and Y. S. Kim, "Synergistically integrated phosphonated poly (pentafluorostyrene) for fuel cells", Nat. Mater., 20, 370-377 (2021). 

  35. D. C. Seel and B. C. Benicewicz, "Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems", J. Membr. Sci., 405, 57-67 (2012). 

  36. G. Qian and B. C. Benicewicz, "Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells", J. Polym. Sci. A. Polym. Chem., 47, 4064-4073 (2009). 

  37. J. W. Lee, D. Y. Lee, H.-J. Kim, S. Y. Nam, J. J. Choi, J.-Y. Kim, J. H. Jang, E. Cho, S.-K. Kim, and S.-A. Hong, "Synthesis and characterization of acid-doped polybenzimidazole membranes by sol- gel and post-membrane casting method", J. Membr. Sci., 357, 130-133 (2010). 

  38. L. Xiao, H. Zhang, E. Scanlon, L. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, "High-temperature polybenzimidazole fuel cell membranes via a sol- gel process", Chem. Mater., 17, 5328-5333 (2005). 

  39. Q. Li, R. He, J. Jensen, and N. Bjerrum, "PBI-based polymer membranes for high temperature fuel cells-preparation, characterization and fuel cell demonstration", Fuel Cells, 4, 147-159 (2004). 

  40. J. E. Del Bene and I. Cohen, "Molecular orbital theory of the hydrogen bond. 20. Pyrrole and imidazole as proton donors and proton acceptors", J. Am. Chem. Soc., 100, 5285-5290 (1978). 

  41. Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells", J. Electrochem. Soc., 151, A8 (2003). 

  42. X. Baozhong and O. Savadogo, "The effect of acid doping on the conductivity of polybenzimidazole (PBI)", J. New Mater. Electrochem. Syst., 2, (1999). 

  43. H. Pu, W. H. Meyer and G. Wegner, "Proton transport in polybenzimidazole blended with H 3 PO 4 or H 2 SO 4 ", J. Polym. Sci. B. Polym. Phys., 40, 663-669 (2002). 

  44. J. Fontanella, M. Wintersgill, J. Wainright, R. Savinell, and M. Litt, "High pressure electrical conductivity studies of acid doped polybenzimidazole", Electrochim. Acta, 43, 1289-1294 (1998). 

  45. L. Qingfeng, H. A. Hjuler, and N. Bjerrum, "Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications", J. Appl. Electrochem., 31, 773-779 (2001). 

  46. J. Escorihuela, A. Garcia-Bernabe, and V. Compan, "A deep insight into different acidic additives as doping agents for enhancing proton conductivity on polybenzimidazole membranes", Polymers, 12, 1374 (2020). 

  47. A. Kannan, Q. Li, L. N. Cleemann, and J. O. Jensen, "Acid Distribution and Durability of HT-PEM Fuel Cells with Different Electrode Supports", Fuel Cells, 18, 103-112 (2018). 

  48. M. Prokop, M. Vesely, P. Capek, M. Paidar, and K. Bouzek, "High-temperature PEM fuel cell electrode catalyst layers part 1: Microstructure reconstructed using FIB-SEM tomography and its calculated effective transport properties", Electrochim. Acta, 413, 140133 (2022). 

  49. X. Li, H. Ma, H. Wang, S. Zhang, Z. Jiang, B. Liu, and M. D. Guiver, "Novel PA-doped polybenzimidazole membranes with high doping level, high proton conductivity and high stability for HT-PEMFCs", RSC Adv., 5, 53870-53873 (2015). 

  50. E. Quartarone, P. Mustarelli, A. Carollo, S. Grandi, A. Magistris, and Gerbaldi, "PBI composite and nanocomposite membranes for PEMFCs: the role of the filler", Fuel Cells, 9, 231-236 (2009). 

  51. A. LaConti, M. Hamdan, and R. McDonald, "Handbook of fuel cells-fundamentals, technology and applications", Wiley, New York, NY, 3, 647 (2003). 

  52. A. Collier, H. Wang, X. Z. Yuan, J. Zhang, and D. P. Wilkinson, "Degradation of polymer electrolyte membranes", Int. J. Hydrog. Energy, 31, 1838-1854 (2006). 

  53. F. Mack, K. Aniol, C. Ellwein, J. Kerres, and R. Zeis, "Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells", J. Mater. Chem. A, 3, 10864-10874 (2015). 

  54. J. Park, L. Wang, S. G. Advani, and A. K. Prasad, "Mechanical stability of H 3 PO 4 -doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs", Electrochim. Acta, 120, 30-38 (2014). 

  55. D. Qiu, L. Peng, X. Lai, M. Ni, and W. Lehnert, "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell", Renew. Sust. Energ. Rev., 113, 109289 (2019). 

  56. S. J. Aravind, R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, "Solar exfoliated graphene-carbon nanotube hybrid nano composites as efficient catalyst supports for proton exchange membrane fuel cells", J. Mater. Chem., 21, 18199-18204 (2011). 

  57. A. Pandele, F. Comanici, C. Carp, F. Miculescu, S. Voicu, V. Thakur, and B. Serban, "Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications", Vacuum, 146, 599-605 (2017). 

  58. S. Hassan and M. Gupta, "Development of high performance magnesium nano-composites using nano-Al 2 O 3 as reinforcement", Mater. Sci. Eng. A, 392, 163-168 (2005). 

  59. H. A. Arida, A. Al-Hajry, and I. A. Maghrabi, "A novel solid-state copper (II) thin-film micro-sensor based on organic membrane and titanium dioxide nano-composites", Int. J. Electrochem. Sci., 9, 426-434 (2014). 

  60. Y. S. Choi and I. J. Chung, "Comprehending polymer-clay nanocomposites and their future works", Korean Chem. Eng. Res., 46, 23-36 (2008). 

  61. D. HAN and D. J. YOO, "Mesoporous SiO 2 mediated polybenzimidazole composite membranes for HT-PEMFC application", KHNES, 30, 128-135 (2019). 

  62. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Effect of functionalized SiO 2 toward proton conductivity of composite membranes for PEMFC application", Int. J. Energy. Res., 43, 5333-5345 (2019). 

  63. K. Selvakumar, A. R. Kim, M. R. Prabhu, and D. J. Yoo, "Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications", Compos. Res., 34, 373-379 (2021). 

  64. N. Ioana-Maria, J. Aurora, C. Victoria, and B. Cristian, "Advanced polymeric materials based on PBI/SiO 2 composite with high-performances designated for PEM-fuel cells." 2017 Electric Vehicles International Conference (EV), pp 1-6, (2017). 

  65. S. Bano, Y. S. Negi, R. Illathvalappil, S. Kurungot, and K. Ramya, "Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes", Electrochim. Acta, 293, 260-272 (2019). 

  66. H. Pu, L. Liu, Z. Chang, and J. Yuan, "Organic/ inorganic composite membranes based on polybenzimidazole and nano-SiO 2 ", Electrochim. Acta, 54, 7536-7541 (2009). 

  67. Y. Ozdemir, N. Uregen, and Y. Devrim, "Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells", Int. J. Hydrog. Energy, 42, 2648-2657 (2017). 

  68. F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount", RSC Adv., 2, 1547-1556 (2012). 

  69. A. Lysova, I. Ponomarev, and A. Yaroslavtsev, "Composite materials based on polybenzimidazole and inorganic oxides", Solid State Ion., 188, 132-134 (2011). 

  70. X. Chen, G. Qian, M. A. Molleo, B. C. Benicewicz, and H. J. Ploehn, "High temperature creep behavior of phosphoric acid-polybenzimidazole gel membranes", J. Polym. Sci. B: Polym. Phys., 53, 1527-1538 (2015). 

  71. J. Liao, Q. Li, H. Rudbeck, J. O. Jensen, A. Chromik, N. Bjerrum, J. Kerres, and W. Xing, "Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells", Fuel Cells, 11, 745-755 (2011). 

  72. H. Hou, M. L. Di Vona and P. Knauth, "Building bridges: Crosslinking of sulfonated aromatic polymers-A review", J. Membr. Sci., 423, 113-127 (2012). 

  73. H. Li, G. Zhang, J. Wu, C. Zhao, Q. Jia, C. M. Lew, L. Zhang, Y. Zhang, M. Han, and J. Zhu, "A facile approach to prepare self-cross-linkable sulfonated poly (ether ether ketone) membranes for direct methanol fuel cells", J. Power Sources, 195, 8061-8066 (2010). 

  74. J. H. Kim, K. Kim, and S. Y. Nam, "Research trends of polybenzimidazole-based membranes for hydrogen purification applications", Appl. Chem. Eng., 31, 453-466 (2020). 

  75. I. B. Valtcheva, P. Marchetti, and A. G. Livingston, "Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters", J. Membr. Sci., 493, 568-579 (2015). 

  76. N. N. Krishnan, D. Joseph, N. M. H. Duong, A. Konovalova, J. H. Jang, H.-J. Kim, S. W. Nam, and D. Henkensmeier, "Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells", J. Membr. Sci., 544, 416-424 (2017). 

  77. Harilal, R. Nayak, P. C. Ghosh, and T. Jana, "Cross-linked polybenzimidazole membrane for PEM fuel cells", ACS Appl. Polym. Mater., 2, 3161-3170 (2020). 

  78. W. Peng, F. Yao, J. Hu, Y. Liu, Z. Lu, Y. Liu, Z. Liu, K. Zeng, and G. Yang, "Renewable proteinbased monomer for thermosets: a case study on phthalonitrile resin", Green Chem., 20, 5158-5168 (2018). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로