$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향
Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications 원문보기

멤브레인 = Membrane Journal, v.32 no.5, 2022년, pp.292 - 303  

최찬희 (경상국립대학교 나노신소재융합공학과) ,  황선수 (경상국립대학교 나노신소재융합공학과) ,  김기현 (경상국립대학교 나노신소재융합공학과)

초록
AI-Helper 아이콘AI-Helper

이산화탄소 배출이 없는 고분자 전해질 막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)는 수송용, 발전용 시스템에 적용 가능한 친환경 에너지 변환장치이다. PEMFC의 주요 구성품 중 하나인 고분자 전해질 막(polymer electrolyte membrane, PEM)은 구동시간 동안의 높은 수소 이온 전도도와 물리화학적 안정성 갖춘 과불소화계 고분자(perfluorinated sulfonic acid, PFSA) 기반 PEM (PFSA-PEM)이 상용화 되어있다. 하지만 PFSA-PEM의 단점으로 지적되는 낮은 유리전이온도와 높은 기체 투과도의 보완이 요구되고 있다. 이에 본 총설에서는 PFSA-PEM의 성능 향상 및 단점 보완을 위해 1) PFSA의 측쇄부 길이를 조절함으로써 이온교환용량의 증가와 고분자의 결정성을 증가시켜 PFSA-PEM의 능력을 향상시킨 연구와 2) 유/무기 첨가제를 도입하여 수소 이온 전도도 및 물리적 안정성을 향상시키는 복합 막 연구 및 3) 다공성 지지체를 도입하여 PEM의 두께를 효과적으로 감소시켜 막 저항을 효과적으로 줄이고 내구성을 큰 폭으로 개선한 다공-충진막에 관한 연구를 소개하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produ...

주제어

참고문헌 (68)

  1. V. UNFCCC, "Adoption of the Paris agreement", Proposal by the President, 282, 2 (2015). 

  2. B. Freedman, G. Stinson, and P. Lacoul, "Carbon credits and the conservation of natural areas", Environ. Rev., 17, 1 (2009). 

  3. Jae-Joon Lee and Choi seok hwan, "A study on the development of the planning indicator for carbon neutral on the district unit plan", J. Korea Plan. Assoc., 44, 119 (2009). 

  4. H.-W. Rhee, M.-K. Song, Y.-T. Kim, K.-H. Kim, "High temperature proton exchange membrane using ionomer/solid proton conductor, preparation method thereof and fuel cell containing the same", US Patent 7,977,008, July 12 (2011). 

  5. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A.-G. Olabi, "Advances in stationary and portable fuel cell applications", Int. J. Hydrog. Energy, 41, 16509 (2016). 

  6. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrog. Energy, 35, 9349 (2010). 

  7. W. Daud, R. Rosli, E. Majlan, S. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energy, 113, 620 (2017). 

  8. M. W. Tsang and S. Holdcroft, "Alternative proton exchange membranes by chain-growth polymerization.", Green Energy Environ., 10, 651 (2012). 

  9. M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications", Polymers, 13, 3520 (2021). 

  10. P. Heo, M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Self-humidifying membrane for high-performance fuel cells operating at harsh conditions: Heterojunction of proton and anion exchange membranes composed of acceptor-doped SnP2O7 composites", Membranes, 11, 776 (2021). 

  11. Hansol Ko, Mijeong Kim, Sang Yong Nam, and Kihyun Kim, "Research of cross-linked hydrocarbon based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 30, 395 (2020). 

  12. M. R. Molavian, A. Abdolmaleki, and K. Eskandari, "Theoretical investigation of proton-transfer in different membranes for PEMFC applications in low humidity conditions", Comput. Mater. Sci., 122, 126 (2016). 

  13. C. Wang, Z. Feng, Y. Zhao, X. Li, W. Li, X. Xie, S. Wang, and H. Hou, "Preparation and properties of ion exchange membranes for PEMFC with sulfonic and carboxylic acid groups based on polynorbornenes", Int. J. Hydrog. Energy, 42, 29988 (2017). 

  14. A. Kusoglu and A. Z. Weber, "New insights into perfluorinated sulfonic-acid ionomers", Chem. Rev., 117, 987 (2017). 

  15. J. Li, M. Pan, and H. Tang, "Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells", RSC Adv., 4, 3944 (2014). 

  16. J. A. Elliott and S. J. Paddison, "Modelling of morphology and proton transport in PFSA membranes", Phys. Chem. Chem. Phys., 9, 2602 (2007). 

  17. B. Torok, I. Kiricsi, A. Molnar, and G. A. Olah, "Acidity and catalytic activity of a Nafion-H/silica nanocomposite catalyst compared with a silicasupported Nafion sample", J. Catal., 193, 132 (2000). 

  18. M. Gross, G. Maier, T. Fuller, S. MacKinnon, and C. Gittleman, "Design rules for the improvement of the performance of hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)", Handbook of Fuel Cells, John Wiley & Sons, New York (2010). 

  19. V. Mehta and J. S. Cooper, "Review and analysis of PEM fuel cell design and manufacturing", J. Power Sources, 114, 32 (2003). 

  20. H. A. Gasteiger and M. F. Mathias, "Fundamental research and development challenges in polymer electrolyte fuel cell technology", ECS Trans., 2002, 1 (2002). 

  21. M. R. Tant, K. P. Darst, K. D. Lee, and C. W. Martin, "Structure and properties of short-side-chain perfluorosulfonate ionomers", ACS Symp. Ser. Am. Chem. Soc., 395, 370 (1989). 

  22. K.-H. Kim, P. Heo, S.-W. Choi, C. Pak, H. Chang, S.-K. Kim, K.-H. Kim, T. Ko, and J.-C. Lee, "Synthesis of cross-linked membranes for high temperature polymer electrolyte membrane fuel cells (PEMFC)", J. Am. Chem. Soc., 243, 1155 (2012). 

  23. D. Cha, S. W. Jeon, W. Yang, D. Kim, and Y. Kim, "Comparative performance evaluation of selfhumidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions", Energy, 150, 320 (2018). 

  24. Y. Garsany, R. W. Atkinson, M. B. Sassin, R. M. Hjelm, B. D. Gould, and K. E. Swider-Lyons, "Improving PEMFC performance using short-sidechain low-equivalent-weight PFSA ionomer in the cathode catalyst layer", J. Electrochem. Soc., 165, F381 (2018). 

  25. A. Ghielmi, P. Vaccarono, C. Troglia, and V. Arcella, "Proton exchange membranes based on the short-side-chain perfluorinated ionomer", J. Power Sources, 145, 108 (2005). 

  26. E. Y. Safronova, A. Osipov, and A. Yaroslavtsev, "Short side chain Aquivion perfluorinated sulfonated proton-conductive membranes: Transport and mechanical properties", Pet. Chem., 58, 130 (2018). 

  27. R. B. Moore III and C. R. Martin, "Morphology and chemical properties of the Dow perfluorosulfonate ionomers", Macromolecules, 22, 3594 (1989). 

  28. M. Tant, K. Lee, K. Darst, and C. Martin, "Effect of side-chain length on the properties of perfluorocarbon ionomers", Polym. Mater. Sci. Eng, 58, 1074 (1988). 

  29. A. Stassi, I. Gatto, E. Passalacqua, V. Antonucci, A. Arico, L. Merlo, C. Oldani, and E. Pagano, "Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation", J. Power Sources, 196, 8925 (2011). 

  30. N. J. Economou, J. R. O'Dea, T. B. McConnaughy, and S. K. Buratto, "Morphological differences in short side chain and long side chain perfluorosulfonic acid proton exchange membranes at low and high water contents", RSC Adv., 3, 19525 (2013). 

  31. X. Luo, S. Holdcroft, A. Mani, Y. Zhang, and Z. Shi, "Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network", Phys. Chem. Chem. Phys., 13, 18055 (2011). 

  32. K. Talukdar, P. Gazdzicki, and K. A. Friedrich, "Comparative investigation into the performance and durability of long and short side chain ionomers in polymer electrolyte membrane fuel cells", J. Power Sources, 439, 227078 (2019). 

  33. F. Shang, L. Li, Y. Zhang, and H. Li, "PWA/silica/PFSA composite membrane for direct methanol fuel cells", J. Mater. Sci., 44, 4383 (2009). 

  34. C. Wang, Z. Liu, Z. Mao, J. Xu, and K. Ge, "Preparation and evaluation of a novel self-humidifying Pt/PFSA composite membrane for PEM fuel cell", J. Chem. Eng., 112, 87 (2005). 

  35. G. Alberti and M. Casciola, "Composite membranes for medium-temperature PEM fuel cells", Annu. Rev. Mater. Res., 33, 129 (2003). 

  36. A. R. Kim, M. Vinothkannan, M. H. Song, J.-Y. Lee, H.-K. Lee, and D. J. Yoo, "Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly (ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity", Compos. B. Eng., 188, 107890 (2020). 

  37. E. Abouzari-Lotf, M. Etesami, and M. M. Nasef, "Canbon-based nanocomposite proton exchange membrane for fuel cell", p. 437, Carbon-Based Polymer Nanocomposites for Environ-mental and Energy Applications, Elsevier, Amsterdam (2018). 

  38. A. K. Sahu, K. Ketpang, S. Shanmugam, O. Kwon, S. Lee, and H. Kim, "Sulfonated graphene- nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity", J. Phys. Chem. C, 120, 15855 (2016). 

  39. C. Yin, B. Xiong, Q. Liu, J. Li, L. Qian, Y. Zhou, and C. He, "Lateral-aligned sulfonated carbonnanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties", J. Membr. Sci., 591, 117356 (2019). 

  40. N. Cele, S. Sinha Ray, S. K. Pillai, M. Ndwandwe, S. Nonjola, L. Sikhwivhilu, and M. K. Mathe, "Carbon nanotubes based nafion composite membranes for fuel cell applications", Fuel Cells, 10, 64 (2010). 

  41. M.-Y. Lim, J. Oh, H. J. Kim, K. Y. Kim, S.-S. Lee, and J.-C. Lee, "Effect of antioxidant grafted graphene oxides on the mechanical and thermal properties of polyketone composites", Eur. Polym. J., 69, 156 (2015). 

  42. M. Taufiq Musa, N. Shaari, and S. K. Kamarudin, "Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview", Int. J. Energy Res., 45, 1309 (2021). 

  43. J. Wang, C. Gong, S. Wen, H. Liu, C. Qin, C. Xiong, and L. Dong, "A facile approach of fabricating proton exchange membranes by incorporating polydopamine-functionalized carbon nanotubes into chitosan", Int. J. Hydrog. Energy, 44, 6909 (2019). 

  44. J. K. Holt, A. Noy, T. Huser, D. Eaglesham, and O. Bakajin, "Fabrication of a carbon nanotubeembedded silicon nitride membrane for studies of nanometer-scale mass transport", Nano Lett., 4, 2245 (2004). 

  45. T. Altalhi, M. Ginic-Markovic, N. Han, S. Clarke, and D. Losic, "Synthesis of carbon nanotube (CNT) composite membranes", Membranes, 1, 37 (2010). 

  46. R. Kannan, B. A. Kakade, and V. K. Pillai, "Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes", Angew. Chem. Int. Ed., 47, 2653 (2008). 

  47. Y.-L. Liu, Y.-H. Su, C.-M. Chang, D.-M. Wang, and J.-Y. Lai, "Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells", J. Mater. Chem., 20, 4409 (2010). 

  48. N. Shaari and S. K. Kamarudin, "Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview", Int. J. Energy Res., 43, 2756 (2019). 

  49. P. Molla-Abbasi, K. Janghorban, and M. S. Asgari, "A novel heteropolyacid-doped carbon nanotubes/Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications", Iran. Polym. J., 27, 77 (2018). 

  50. P. Dimitrova, K. Friedrich, U. Stimming, and B. Vogt, "Modified Nafion®-based membranes for use in direct methanol fuel cells", Solid State Ion., 150, 115 (2002). 

  51. Y. Devrim, H. Devrim, and I. Eroglu, "Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells", Int. J. Hydrog. Energy, 41, 10044 (2016). 

  52. H. Lade, V. Kumar, G. Arthanareeswaran, and A. Ismail, "Sulfonated poly (arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: A review", Int. J. Hydrog. Energy, 42, 1063 (2017). 

  53. I. S. Amiinu, W. Li, G. Wang, Z. Tu, H. Tang, M. Pan, and H. Zhang, "Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes", Electrochim. Acta, 160, 185 (2015). 

  54. Z.-G. Shao, P. Joghee, and I.-M. Hsing, "Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells", J. Membr. Sci., 229, 43 (2004). 

  55. N. E. De Almeida and E. B. Easton, "Nafion/sulfonated silica composite membranes for PEM fuel cells", ECS Trans., 28, 29 (2010). 

  56. T. Ko, K. Kim, S.-K. Kim, and J.-C. Lee, "Organic/inorganic composite membranes comprising of sulfonated Poly (arylene ether sulfone) and core-shell silica particles having acidic and basic polymer shells", Polymer, 71, 70 (2015). 

  57. S. Y. So, Y. J. Yoon, T.-H. Kim, K. Yoon, and Y. T. Hong, "Sulfonated poly (arylene ether sulfone)/functionalized silicate hybrid proton conductors for high-temperature proton exchange membrane fuel cells", J. Membr. Sci., 381, 204 (2011). 

  58. K. Oh, O. Kwon, B. Son, D. H. Lee, and S. Shanmugam, "Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition", J. Membr. Sci., 583, 103 (2019). 

  59. T. Ko, K. Kim, M.-Y. Lim, S. Y. Nam, T.-H. Kim, S.-K. Kim, and J.-C. Lee, "Sulfonated poly (arylene ether sulfone) composite membranes having poly (2, 5-benzimidazole)-grafted graphene oxide for fuel cell applications", J. Mater. Chem., 3, 20595 (2015). 

  60. K. Kim, J. Bae, M.-Y. Lim, P. Heo, S.-W. Choi, H.-H. Kwon, and J.-C. Lee, "Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications", J. Membr. Sci., 525, 125 (2017). 

  61. L. Wang, B. Yi, H. Zhang, Y. Liu, D. Xing, Z.-G. Shao, and Y. Cai, "Sulfonated polyimide/PTFE reinforced membrane for PEMFCs", J. Power Sources, 167, 47 (2007). 

  62. S. Ryu, B. Lee, J. H. Kim, C. Pak, and S. H. Moon, "High-temperature operation of PEMFC using pore-filling PTFE/Nafion composite membrane treated with electric field", Int. J. Energy Res., 45, 19136 (2021). 

  63. K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly (arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017). 

  64. R. Gloukhovski, V. Freger, and Y. Tsur, "Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: A beginner's guide", Rev. Chem. Eng., 34, 455 (2018). 

  65. J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld, "Advanced composite polymer electrolyte fuel cell membranes", ECS Trans., 1995, 193 (1995). 

  66. K. M. Nouel and P. S. Fedkiw, "Nafion®-based composite polymer electrolyte membranes", Electrochim. Acta, 43, 2381 (1998). 

  67. Y. Oshiba, J. Tomatsu, and T. Yamaguchi, "Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells", J. Power Sources, 394, 67 (2018). 

  68. H.-B. Song, J.-H. Park, J.-S. Park, and M.-S. Kang, "Pore-filled proton-exchange membranes with fluorinated moiety for fuel cell application", Energies, 14, 4433 (2021). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로