$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

사람 및 가축 유래 분변 미생물 군집과 항생제 내성 유전자 간 상관 관계에 대한 연구
Co-occurrence Analyses of Antibiotic Resistance Genes and Microbial Community in Human and Livestock Animal Feces 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.41 no.4, 2022년, pp.335 - 343  

정지원 (제주대학교 생명자원과학대학 분자생명공학전공(생명공학부)) ,  반다리 아프라지타 (제주대학교 생명자원과학대학 분자생명공학전공(생명공학부)) ,  운노 타쯔야 (제주대학교 생명자원과학대학 분자생명공학전공(생명공학부))

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: Antibiotics used in animal husbandry for disease prevention and treatment have resulted in the rapid progression of antibiotic resistant bacteria which can be introduced into the environment through livestock feces/manure, disseminating antibiotic resistant genes (ARGs). In this study, f...

주제어

참고문헌 (34)

  1. Liu B, Pop M (2009) ARDB-antibiotic resistance genes database. Nucleic Acids Research, 37(suppl_1), D443-D447. https://doi.org/10.1093/nar/gkn656. 

  2. Viola C, DeVincent SJ (2006) Overview of issues pertaining to the manufacture, distribution, and use of antimicrobials in animals and other information relevant to animal antimicrobial use data collection in the United States. Preventive Veterinary Medicine, 73(2-3), 111-131. https://doi.org/10.1016/j.prevetmed.2005.09.020. 

  3. O'Neill J (2014) Antimicrobial resistance: Tackling a crisis for the health and wealth of nations, Review on Antimicrobial Resistance, UK, p. 6. 

  4. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654. https://doi.org/10.1073/pnas.1503141112. 

  5. Chantziaras I, Boyen F, Callens B, Dewulf J (2014) Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. Journal of Antimicrobial Chemotherapy, 69(3), 827-834. https://doi.org/10.1093/jac/dkt443. 

  6. He L-Y, Ying G-G, Liu Y-S, Su H-C, Chen J, Liu S-S, Zhao J-L (2016) Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, 92, 210-219. https://doi.org/10.1016/j.envint.2016.03.023. 

  7. Mu Q, Li J, Sun Y, Mao D, Wang Q, Luo Y (2015) Occurrence of sulfonamide-, tetracycline-, plasmidmediated quinolone-and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research, 22(9), 6932-6940. https://doi.org/10.1007/s11356-014-3905-5. 

  8. Pu Q, Zhao L-X, Li Y-T, Su J-Q (2020) Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. Journal of Hazardous Materials, 391, 122267. https://doi.org/10.1016/j.jhazmat.2020.122267. 

  9. Chee Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 38(3), 1086-1108. https://doi.org/10.2134/jeq2008.0128. 

  10. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337(6098), 1107-1111. https://10.1126/science.1220761. 

  11. Zhao Y, Yang QE, Zhou X, Wang F-H, Muurinen J, Virta MP, Brandt KK, Zhu Y-G (2021) Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Critical Reviews in Environmental Science and Technology, 51(19), 2159-2196. https://doi.org/10.1080/10643389.2020.1777815. 

  12. Burch TR, Stokdyk JP, Firnstahl AD, Kieke Jr BA, Cook RM, Opelt SA, Spencer SK, Durso LM, Borchardt MA (2022) Microbial source tracking and land use associations for antibiotic resistance genes in private wells influenced by human and livestock fecal sources. Journal of Environmental Quality. https://doi.org/10.1002/jeq2.20443. 

  13. Li W, Su H, Cao Y, Wang L, Hu X, Xu W, Xu Y, Li Z, Wen G (2020) Antibiotic resistance genes and bacterial community dynamics in the seawater environment of Dapeng Cove, South China. Science of The Total Environment, 723, 138027. https://doi.org/10.1016/j.scitotenv.2020.138027. 

  14. An X-L, Chen Q-L, Zhu D, Zhu Y-G, Gillings MR, Su J-Q (2018) Impact of wastewater treatment on the prevalence of integrons and the genetic diversity of integron gene cassettes. Applied and Environmental Microbiology, 84(9), e02766-17. https://doi.org/10.1128/AEM.02766-17. 

  15. Krauland MG, Marsh JW, Paterson DL, Harrison LH (2009) Integron-mediated multidrug resistance in a global collection of nontyphoidal Salmonella enterica isolates. Emerging Infectious Diseases, 15(3), 388. https://10.3201/eid1503.081131. 

  16. Blake KS, Choi J, Dantas G (2021) Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Cellular and Molecular Life Sciences, 78(6), 2585-2606. https://doi.org/10.1007/s00018-020-03717-2. 

  17. Yang Y, Li B, Ju F, Zhang T (2013) Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. Environmental Science & Technology, 47(18), 10197- 10205. https://doi.org/10.1021/es4017365. 

  18. Crossette E, Gumm J, Langenfeld K, Raskin L, Duhaime M, Wigginton K (2021) Metagenomic quantification of genes with internal standards. MBio, 12(1), e03173-e03220. https://doi.org/10.1128/mBio.03173-20. 

  19. Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje J M, Zhang T (2015) Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal, 9(11), 2490-2502. https://doi.org/10.1038/ismej.2015.59. 

  20. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2012) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219. 

  21. Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.2584. 

  22. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH et al. (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541. https://doi.org/10.1128/AEM.01541-09. 

  23. Jang HM, Kim YB, Choi S, Lee Y, Shin SG, Unno T, Kim YM (2018) Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environmental Pollution, 233, 1049-1057. https://doi.org/10.1016/j.envpol.2017.10.006. 

  24. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 22(9), 536-545. https://doi.org/10.1016/j.tim.2014.05.005. 

  25. Song L, Jiang G, Wang C, Ma J, Chen H (2022) Effects of antibiotics consumption on the behavior of airborne antibiotic resistance genes in chicken farms. Journal of Hazardous Materials, 129288. https://doi.org/10.1016/j.jhazmat.2022.129288. 

  26. Byrne-Bailey K, Gaze W, Kay P, Boxall A, Hawkey P, Wellington E (2009) Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrobial Agents and Chemotherapy, 53(2), 696-702. https://doi.org/10.1128/AAC.00652-07. 

  27. Mao D, Yu S, Rysz M, Luo Y, Yang F, Li F, Hou J, Mu Q, Alvarez P (2015) Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Research, 85, 458-466. https://doi.org/10.1016/j.watres.2015.09.010. 

  28. Speldooren V, Heym B, Labia R, Nicolas-Chanoine M-H (1998) Discriminatory detection of inhibitorresistant β-lactamases in Escherichia coli by singlestrand conformation polymorphism-PCR. Antimicrobial Agents and Chemotherapy, 42(4), 879-884. https://doi.org/10.1128/AAC.42.4.879. 

  29. Henriques IS, Fonseca F, Alves A, Saavedra MJ, Correia A (2006) Occurrence and diversity of integrons and β-lactamase genes among ampicillin-resistant isolates from estuarine waters. Research in Microbiology, 157(10), 938-947. https://doi.org/10.1016/j.resmic.2006.09.003. 

  30. Pei R, Kim S-C, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 40(12), 2427-2435. https://doi.org/10.1016/j.watres.2006.04.017. 

  31. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC (2006) Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrobial Agents and Chemotherapy, 50(11), 3953-3955. https://doi.org/10.1128/AAC.00915-06. 

  32. Knapp CW, Dolfing J, Ehlert PA, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology, 44(2), 580-587. https://doi.org/10.1021/es901221x. 

  33. Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, JJ Alvarez P (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environmental Science & Technology, 44(19), 7220-7225. https://doi.org/10.1021/es100233w. 

  34. Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, Grady M, Liebert C, Summers AO, White DG (2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrobial Agents and Chemotherapy, 45(3), 723-726. https://doi.org/10.1128/AAC.45.3.723-726.2001. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로