$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성
Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries 원문보기

Korean chemical engineering research = 화학공학, v.60 no.2, 2022년, pp.184 - 192  

신윤정 (충북대학교 화학공학과) ,  이원열 (충북대학교 화학공학과) ,  김태윤 (에스엔피랩) ,  문승근 (성진코퍼레이션(주)) ,  김은미 (충북대학교 화학공학과) ,  정상문 (충북대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

수열합성을 통해 합성한 다공성 NiO는 리튬 폴리설파이드의 용출을 억제하기 위하여 리튬-황 전지의 전극에 사용되었다. 리튬-황 전지의 전극은 경제적이고 간단한 진공 여과 방법을 이용하여 집전체와 바인더가 없는 프리스탠딩 플렉서블 전극으로 제작되었다. 다공성 NiO를 첨가한 S/CNT/NiO 전극은 순수 S/CNT 전극에 비해 125 mA h g-1 증가한 877 mA h g-1 (0.2 C)의 초기 방전용량과 200 사이클 후 84% (S/CNT: 66%)의 우수한 용량 유지율을 나타내었다. 이는 방전 과정 중에서 NiO와 리튬 폴리설파이드의 강한 화학적 결합에 의하여 리튬 폴리설파이드의 전해질로 용출되는 것을 억제하여 나타난 결과이다. 또한 S/CNT/NiO 전극의 유연성 테스트를 위해 1.6 × 4 cm2의 파우치셀로 제작하여 폴딩한 상태와 하지 않은 상태에서 모두 620 mA h g-1의 안정적인 사이클 특성을 나타내었다.

Abstract AI-Helper 아이콘AI-Helper

Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration m...

주제어

표/그림 (8)

참고문헌 (51)

  1. Kim, T., Song, W., Son, D.-Y., Ono, L. K. and Qi, Y., "LithiumIon Batteries: Outlook on Present, Future, and Hybridized Technologies," Journal of Materials Chemistry A., 7(7), 2942-2964(2019). 

  2. Ould Ely, T., Kamzabek, D., Chakraborty, D. and Doherty, M. F., "Lithium-Sulfur Batteries: State of the Art and Future Directions," ACS Applied Energy Materials., 1(5), 1783-1814(2018). 

  3. Wang, Z.-Y., Han, D.-D., Liu, S., Li, G.-R., Yan, T.-Y.,Gao, X.-P., "Conductive RuO 2 Stacking Microspheres as an Effective Sulfur Immobilizer for Lithium-Sulfur Battery," Electrochimica Acta., 337(2020). 

  4. Saroha, R., Ahn, J.-H.,Cho, J. S., "A Short Review on Dissolved Lithium Polysulfide Catholytes for Advanced Lithium-Sulfur Batteries," Korean Journal of Chemical Engineering., 38(3), 461-474(2021). 

  5. Yang, C., Li, P., Yu, J., Zhao, L.-D. and Kong, L., "Approaching Energy-Dense and Cost-Effective Lithium-Sulfur Batteries: From Materials Chemistry and Price Considerations," Energy., 201(2020). 

  6. Jin, E., Lee, G., Na, B. and Jeong, M., "Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery," Korean Chem. Eng. Res., 55(2), 163-169(2017). 

  7. Jo, M. and Cho, J., "Application of Hierarchically Porous Fe 2 O 3 Nanofibers for Anode Materials of Lithium-ion Batteries," Korean Chem. Eng. Res., 57(2), 267-273(2019). 

  8. Lee, Y., Jeong, S. and Cho, J., "Application of Porous Nanofibers Comprising Hollow α-Fe 2 O 3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries," Korean Chem. Eng. Res., 56(6), 819-825(2018). 

  9. Gueon, D., Hwang, J. T., Yang, S. B., Cho, E., Sohn, K., Yang, D.-K. and Moon, J. H., "Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes," ACS Nano., 12(1), 226-233(2018). 

  10. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. and Su, Y.-S., "Rechargeable Lithium-Sulfur Batteries," Chemical Reviews., 114(23), 11751-11787(2014). 

  11. Saroha, R., Oh, J. H., Seon, Y. H., Kang, Y. C., Lee, J. S., Jeong, D. W. and Cho, J. S., "Freestanding Interlayers for Li-S Batteries: Design and Synthesis of Hierarchically Porous N-Doped C Nanofibers Comprising Vanadium Nitride Quantum Dots and Mof-Derived Hollow N-Doped C Nanocages," Journal of Materials Chemistry A., 9(19), 11651-11664(2021). 

  12. Zhu, M., Tang, J., Wei, W. and Li, S., 'Recent Progress in the Syntheses and Applications of Multishelled Hollow Nanostructures," Materials Chemistry Frontiers., 4(4), 1105-1149(2020). 

  13. Raulo, A., Bandyopadhyay, S., Ahamad, S., Gupta, A., Srivastava, R., Formanek, P. and Nandan, B., "Bio-Inspired Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)-Sulfur@Polyacrylonitrile Electrospun Nanofibers for Lithium-Sulfur Batteries," Journal of Power Sources., 431, 250-258(2019). 

  14. Zhang, J., Yang, C. P., Yin, Y. X., Wan, L. J. and Guo, Y. G., "Sulfur Encapsulated in Graphitic Carbon Nanocages for High-Rate and Long-Cycle Lithium-Sulfur Batteries," Adv Mater., 28(43), 9539-9544(2016). 

  15. Liu, S., Li, Y., Zhang, C., Chen, X., Wang, Z., Cui, F., Yang, X. and Yue, W., "Amorphous TiO 2 Nanofilm Interface Coating on Mesoporous Carbon as Efficient Sulfur Host for Lithium-Sulfur Batteries," Electrochimica Acta., 332(2020). 

  16. Xu, Z.-L., Kim, J.-K. and Kang, K., "Carbon Nanomaterials for Advanced Lithium Sulfur Batteries," Nano Today., 19, 84-107(2018). 

  17. Gong, Q., Gu, S., Li, J., Wang, Q., Sun, X. and Zhou, G., "Fabrication of Silica/Sulfur@Polyaniline Spheres with Radial Mesochannels as Enhanced Cathode Materials for High-Performance Lithium-Sulfur Batteries," ChemNanoMat., 6(5), 827-836(2020). 

  18. Jin, K., Zhou, X., Zhang, L., Xin, X., Wang, G. and Liu, Z., "Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium-Sulfur Batteries," The Journal of Physical Chemistry C., 117(41), 21112-21119(2013). 

  19. Zhang, Y. Z., Zhang, Z., Liu, S., Li, G. R. and Gao, X. P., "Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium-Sulfur Battery," ACS Appl Mater Interfaces., 10(10), 8749-8757(2018). 

  20. Fan, L., Zhuang, H. L., Zhang, K., Cooper, V. R., Li, Q. and Lu, Y., "Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries," Adv Sci (Weinh)., 3(12), 1600175(2016). 

  21. Xia, Y., Fang, R., Xiao, Z., Huang, H., Gan, Y., Yan, R., Lu, X., Liang, C., Zhang, J., Tao, X. and Zhang, W., "Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium-Sulfur Batteries," ACS Appl Mater Interfaces., 9(28), 23782-23791(2017). 

  22. Li, C., Sui, X.-L., Wang, Z.-B., Wang, Q. and Gu, D.-M., "3D N-Doped Graphene Nanomesh Foam for Long Cycle Life Lithium-Sulfur Battery," Chemical Engineering Journal., 326, 265-272(2017). 

  23. Wang, H., Yang, Y., Liang, Y., Robinson, J. T., Li, Y., Jackson, A., Cui, Y. and Dai, H., "Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability," Nano Lett., 11(7), 2644-2647 (2011). 

  24. Yan, L., Gao, X., Thomas, J. P., Ngai, J., Altounian, H., Leung, K. T., Meng, Y. and Li, Y., "Ionically Cross-Linked PEDOT:PSS as a Multi-Functional Conductive Binder for High-Performance Lithium-Sulfur Batteries," Sustainable Energy & Fuels., 2(7), 1574-1581(2018). 

  25. Oschmann, B., Park, J., Kim, C., Char, K., Sung, Y.-E. and Zentel, R., "Copolymerization of Polythiophene and Sulfur to Improve the Electrochemical Performance in Lithium-Sulfur Batteries," Chemistry of Materials., 27(20), 7011-7017(2015). 

  26. Chelladurai, K., Venkatachalam, P., Rengapillai, S., Liu, W.-R., Huang, C.-H. and Marimuthu, S., "Effect of Polyaniline on Sulfur/Sepiolite Composite Cathode for Lithium-Sulfur Batteries," Polymers., 12(4), 755(2020). 

  27. Zhao, X., Wang, J., Sun, X., Wei, K., Wang, W., Wang, A., Huang, Y. and Guan, Y., "Hierarchical Porous Carbon with Nano-MgO as Efficient Sulfur Species Micro-Reactors for Lithium-Sulfur Battery," Journal of The Electrochemical Society., 168(4), 040506 (2021). 

  28. Ponraj, R., Kannan, A. G., Ahn, J. H. and Kim, D.-W., "Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide," ACS Applied Materials & Interfaces., 8(6), 4000-4006(2016). 

  29. Shao, H., Wang, W., Zhang, H., Wang, A., Chen, X. and Huang, Y., "Nano-TiO 2 Decorated Carbon Coating on the Separator to Physically and Chemically Suppress the Shuttle Effect for Lithium-Sulfur Battery," Journal of Power Sources., 378, 537-545 (2018). 

  30. Chen, H., Dong, W.-D., Xia, F.-J., Zhang, Y.-J., Yan, M., Song, J.-P., Zou, W., Liu, Y., Hu, Z.-Y., Liu, J., Li, Y., Wang, H.-E., Chen, L.-H. and Su, B.-L., "Hollow Nitrogen-Doped Carbon/ Sulfur@MnO 2 Nanocomposite with Structural and Chemical Dual-Encapsulation for Lithium-Sulfur Battery," Chemical Engineering Journal., 381, 122746(2020). 

  31. Guo, Y., Li, J., Pitcheri, R., Zhu, J., Wen, P. and Qiu, Y., "Electrospun Ti 4 O 7 /C Conductive Nanofibers as Interlayer for Lithium-Sulfur Batteries with Ultra Long Cycle Life and High-Rate Capability," Chemical Engineering Journal., 355, 390-398(2019). 

  32. Liu, Q., Jiang, Q., Jiang, L., Peng, J., Gao, Y., Duan, Z. and Lu, X., "Preparation of SnO 2 @rGO/CNTs/S Composite and Application for Lithium-Sulfur Battery Cathode Material," Applied Surface Science., 462, 393-398(2018). 

  33. Liu, M., Hou, J., Xiang, J., Shen, X., Luan, K. and Zhang, Y., "Effect of Non-Woven Al 2 O 3 /C Nanofibers as Functional Interlayer on Electrochemical Performance of Lithium-Sulfur Batteries," Journal of Nanoscience and Nanotechnology., 18(11), 7824-7829(2018). 

  34. Campbell, B., Bell, J., Bay, H. H., Favors, Z., Ionescu, R., Ozkan, C. S. and Ozkan, M., "SiO 2 -Coated Sulfur Particles with Mildly Reduced Graphene Oxide as a Cathode Material for Lithium-Sulfur Batteries," Nanoscale., 7(16), 7051-7055(2015). 

  35. Jia, X., Liu, B., Liu, J., Zhang, S., Sun, Z., He, X., Li, H., Wang, G. and Chang, H., "Fabrication of NiO-Carbon Nanotube/Sulfur Composites for Lithium-Sulfur Battery Application," RSC Advances., 11(18), 10753-10759(2021). 

  36. Ghosh, A., Manjunatha, R., Kumar, R. and Mitra, S., "A Facile Bottom-up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries," ACS Applied Materials & Interfaces., 8(49), 33775-33785(2016). 

  37. Mao, Y., Li, G., Guo, Y., Li, Z., Liang, C., Peng, X. and Lin, Z., "Foldable Interpenetrated Metal-Organic Frameworks/Carbon Nano-tubes Thin Film for Lithium-Sulfur Batteries," Nat Commun., 8, 14628(2017). 

  38. Lee, W. Y., Jin, E. M., Cho, J. S., Kang, D.-W., Jin, B. and Jeong, S. M., "Freestanding Flexible Multilayered Sulfur-Carbon Nanotubes for Lithium-Sulfur Battery Cathodes," Energy., 212(2020). 

  39. Chang, C.-H., Chung, S.-H. and Manthiram, A., "Highly Flexible, Freestanding Tandem Sulfur Cathodes for Foldable Li-S Batteries with a High Areal Capacity," Materials Horizons., 4(2), 249-258(2017). 

  40. Mentbayeva, A., Belgibayeva, A., Umirov, N., Zhang, Y., Taniguchi, I., Kurmanbayeva, I. and Bakenov, Z., "High Performance Freestanding Composite Cathode for Lithium-Sulfur Batteries," Electrochimica Acta., 217, 242-248(2016). 

  41. Liu, J., Yuan, L., Yuan, K., Li, Z., Hao, Z., Xiang, J. Huang, Y., "SnO 2 as a High-efficiency Polysulfide Trap in Lithium-sulfur Batteries," Nanoscale., 8, 13638(2016). 

  42. Seh, Z. W., Sun, Y., Zhang, Q. and Cui, Y., "Designing High-Energy Lithium-Sulfur Batteries," Chem Soc Rev., 45(20), 5605-5634(2016). 

  43. Chung, S. H. and Manthiram, A., "Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries," Advanced Functional Materials., 24(33), 5299-5306(2014). 

  44. Yan, L., Luo, N., Kong, W., Luo, S., Wu, H., Jiang, K., Li, Q., Fan, S., Duan, W. and Wang, J., "Enhanced Performance of Lithium-Sulfur Batteries with an Ultrathin and Lightweight MoS 2 /Carbon Nanotube Interlayer," Journal of Power Sources., 389, 169-177(2018). 

  45. Qu, L., Liu, P., Yi, Y., Wang, T., Yang, P., Tian, X., Li, M., Yang, B. and Dai, S., "Enhanced Cycling Performance for Lithium-Sulfur Batteries by a Laminated 2D g-C 3 N 4 /Graphene Cathode Interlayer," ChemSusChem., 12(1), 213-223(2019). 

  46. Song, H., Suh, S., Park, H., Jang, D., Kim, J. and Kim, H. J., "Synthesis of Pompon-Like Zno Microspheres as Host Materials and the Catalytic Effects of Nonconductive Metal Oxides for Lithium-Sulfur Batteries," Journal of Industrial and Engineering Chemistry., 99, 309-316(2021). 

  47. Zhang, Z., Li, Q., Zhang, K., Chen, W., Lai, Y. and Li, J., "Titanium-Dioxide-Grafted Carbon Paper with Immobilized Sulfur as a Flexible Free-Standing Cathode for Superior Lithium-Sulfur Batteries," Journal of Power Sources., 290, 159-167(2015). 

  48. Singhal, R., Chung, S.-H., Manthiram, A. and Kalra, V., "A Free-Standing Carbon Nanofiber Interlayer for High-Performance Lithium-Sulfur Batteries," Journal of Materials Chemistry A., 3(8), 4530-4538(2015). 

  49. Li, M., Zhou, J., Zhou, J., Guo, C., Han, Y., Zhu, Y., Wang, G. and Qian, Y., "Ultrathin SnS 2 Nanosheets as Robust Polysulfides Immobilizers for High Performance Lithium-Sulfur Batteries," Materials Research Bulletin., 96, 509-515(2017). 

  50. Mukkabla, R., Meduri, P., Deepa, M., Shivaprasad, S. M. and Ghosal, P., "Sulfur Enriched Carbon Nanotubols with a Poly(3,4-Ethylenedioxypyrrole) Coating as Cathodes for Long-Lasting Li-S Batteries," Journal of Power Sources., 342, 202-213(2017). 

  51. Carbone, L., Verrelli, R., Gobet, M., Peng, J., Devany, M., Scrosati, B., Greenbaum, S. and Hassoun, J., "Insight on the Li 2 S Electrochemical Process in a Composite Configuration Electrode," New Journal of Chemistry., 40(3), 2935-2943(2016). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로