$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

ZIF-8과 탄소기반물질 복합체를 이용한 슈퍼커패시터 및 화학센서의 최신연구동향
Recent research trend of supercapacitor and chemical sensor using composite of ZIF-8 and carbon-based material 원문보기

한국표면공학회지 = Journal of the Korean institute of surface engineering, v.55 no.2, 2022년, pp.51 - 62  

김상준 (부산대학교 재료공학부) ,  이재민 (부산대학교 재료공학부) ,  조승근 (부산대학교 재료공학부) ,  이은빈 (부산대학교 재료공학부) ,  이승기 (부산대학교 재료공학부) ,  이정우 (부산대학교 재료공학부)

Abstract AI-Helper 아이콘AI-Helper

Metal-organic framework (MOF) is one of the representative porous materials composed of metal ions and organic linkers. In spite of many advantages of the MOFs such as high specific surface area and ease of structure control, drawbacks have become obstacles to the practical use of them with poor ele...

주제어

표/그림 (8)

참고문헌 (41)

  1. H. Furukawa, K. E. Cordova, M. O'Keeffe , O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013) 1230444. 

  2. H. C. Zhou, J. R. Long, O. M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev., 112 (2012) 673-674. 

  3. Y. Yan, T. He, B. Zhao, K. Qi, H. F. Liu, B. Y. Xia, Metal/covalent-organic frameworks-based electrocatalysts for water splitting, J. Mater. Chem. A, 6 (2018) 15905-15926. 

  4. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Metal-organic framework materials as chemical sensors, Chem. Rev., 112 (2012) 1105-1125. 

  5. M. X. Wu, Y. W. Yang, Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy, Adv. Mater., 29 (2017) 1606134. 

  6. H. Li, K. C. Wang, Y. J. Sun, C. T. Lollar, J. L. Li, H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks, Mater. Today, 21 (2018) 108-121. 

  7. B. J. Zhu, D. G. Xia, R. Q. Zou, Metal-organic frameworks and their derivatives as bifunctional electrocatalysts, Coord. Chem. Rev., 376 (2018) 430-448. 

  8. B. L. Chen, Z. X. Yang, Y. Q. Zhu, Y. D. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications, J. Mater. Chem. A, 2 (2014) 16811-16831. 

  9. R. Ahmad, U. A. Khan, N. Iqbal, T. Noor, Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview, Rsc. Adv., 10 (2020) 43733-43750. 

  10. J. Zhang, Y. Tan, W. J. Song, Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review, Microchim. Acta, 187 (2020) 1-23. 

  11. L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38 (2009) 2520-2531. 

  12. M. D. Angione, R. Pilolli, S. Cotrone, M. Magliulo, A. Mallardi, G. Palazzo, L. Sabbatini, D. Fine, A. Dodabalapur, N. Cioffi, L. Torsi, Carbon based materials for electronic bio-sensing, Mater. Today, 14 (2011) 424-433. 

  13. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, 5 (2017) 12653-12672. 

  14. R. Liu, A. Zhou, X. R. Zhang, J. B. Mu, H. W. Che, Y. M. Wang, T. T. Wang, Z. X. Zhang, Z. K. Kou, Fundamentals, advances and challenges of transition metal compounds-based supercapacitors, Chem. Eng. J., 412 (2021) 128611. 

  15. S. Kempahanumakkagari, K. Vellingiri, A. Deep, E. E. Kwon, N. Bolan, K. H. Kim, Metal-organic framework composites as electrocatalysts for electrochemical sensing applications, Coord. Chem. Rev., 357 (2018) 105-129. 

  16. M. Wang, J. Yang, K. L. Jia, S. Y. Liu, C. Hu, J. S. Qiu, Boosting supercapacitor performance of graphene by coupling with nitrogen-doped hollow carbon frameworks, Chem-Eur J, 26 (2020) 2897-2903. 

  17. L. L. Zhu, C. Hao, X. H. Wang, Y. N. Guo, Fluffy cotton-like GO/Zn-Co-Ni layered double hydroxides form from a sacrificed template GO/ZIF-8 for high performance asymmetric supercapacitors, ACS Sustain. Chem. Eng., 8 (2020) 11618-11629. 

  18. W. A. Amer, J. Wang, B. Ding, T. Li, A. E. Allah, M. B. Zakaria, J. Henzie, Y. Yamauchi, Physical expansion of layered graphene oxide nanosheets by chemical vapor deposition of metal- organic frameworks and their thermal conversion into nitrogen-doped porous carbons for supercapacitor applications, Chemsuschem, 13 (2020) 1629-1636. 

  19. L. Wang, C. X. Wang, H. F. Wang, X. Y. Jiao, Y. Ouyang, X. F. Xia, W. Lei, Q. L. Hao, ZIF-8 nanocrystals derived N-doped carbon decorated graphene sheets for symmetric supercapacitors, Electrochim. Acta, 289 (2018) 494-502. 

  20. Z. Li, X. Liu, L. Wang, F. Bu, J. J. Wei, D. Y. Pan, M. H. Wu, Hierarchical 3D allcarbon composite structure modified with N-doped graphene quantum dots for high-performance flexible supercapacitors, Small, 14 (2018) 1801498. 

  21. C. Lu, D. X. Wang, J. J. Zhao, S. Han, W. Chen, A continuous carbon nitride polyhedron assembly for highperformance flexible supercapacitors, Adv. Funct. Mater., 27 (2017) 1606219. 

  22. F. F. Zhu, W. J. Liu, Y. Liu, W. D. Shi, Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications, Chem. Eng. J., 383 (2020) 123150. 

  23. D. H. Wang, Y. Chen, H. Q. Wang, P. H. Zhao, W. Liu, Y. Z. Wang, J. L. Yang, N-doped porous carbon anchoring on carbon nanotubes derived from ZIF-8/polypyrrole nanotubes for superior supercapacitor electrodes, Appl. Surf. Sci., 457 (2018) 1018-1024. 

  24. X. Xu, M. Wang, Y. Liu, Y. Li, T. Lu, L. Pan, In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors, Energy Storage Mater., 5 (2016) 132-138. 

  25. Z. Zhao, S. L. Liu, J. X. Zhu, J. S. Xu, L. Li, Z. Q. Huang, C. Zhang, T. X. Liu, Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors, Acs. Appl. Mater. Inter., 10 (2018) 19871-19880. 

  26. X. M. Cao, Z. B. Han, Hollow core-shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance, Chem. Commun., 55 (2019) 1746-1749. 

  27. H. Yu, W. J. Zhu, H. Zhou, J. F. Liu, Z. Yang, X. C. Hu, A. H. Yuan, Porous carbon derived from metal-organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries, Rsc. Adv., 9 (2019) 9577-9583. 

  28. B. Tan, H. Luo, Z. L. Xie, Formation of N-rich hierarchically porous carbon via direct growth ZIF-8 on C 3 N 4 nanosheet with enhancing electrochemical performance, Chemistryselect, 3 (2018) 6440-6449. 

  29. Y. Xie, X. L. Tu, X. Ma, M. Q. Xiao, G. B. Liu, F. L. Qu, R. Y. Dai, L. M. Lu, W. M. Wang, In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2,2-methylenebis (4-chlorophenol), Electrochim. Acta, 311 (2019) 114-122. 

  30. Y. Huang, W. F. Lin, T. S. Huang, Z. R. Li, Z. R. Zhang, R. T. Xiao, X. Yang, S. T. Lian, J. S. Pan, J. Ma, W. Wang, L. P. Sun, J. Li, B. O. Guan, Ultrafast response optical microfiber interferometric VOC sensor based on evanescent field interaction with ZIF-8/Graphene oxide nanocoating, Adv. Opt. Mater., 10 (2022) 2101561. 

  31. X. X. Dong, C. X. Xu, S. Lu, R. Wang, Z. L. Shi, Q. N. Cui, T. Y. You, ZIF-8 coupling with reduced graphene oxide to enhance the electrochemical sensing of dopamine, J. Electrochem. Soc., 168 (2021) 116517. 

  32. S. Y. Zhou, J. P. Ji, T. Qiu, L. G. Wang, W. B. Ni, S. Li, W. J. Yan, M. Ling, C. D. Liang, Boosting selective H 2 sensing of ZnO derived from ZIF-8 by rGO functionalization, Inorg. Chem. Front., 9 (2022) 599-606. 

  33. Y. X. Qin, W. T. Ding, R. L. Zhao, ZIF-8-derived ZnTi-LDHs with unique self-supported architecture and corresponding LDHs/rGO hybrid for gas sensor applications, Chem. Phys. Lett., 781 (2021) 138965. 

  34. N. Jafari, S. Zeinali, Highly rapid and sensitive formaldehyde detection at room temperature using a ZIF-8/MWCNT nanocomposite, Acs. Omega, 5 (2020) 4395-4402. 

  35. H. X. Li, F. W. Zhu, J. Xiang, F. B. Wang, Q. Liu, X. Q. Chen, In situ growth of ZIF-8 on gold nanoparticles/ magnetic carbon nanotubes for the electrochemical detection of bisphenol A, Anal. Methods, 13 (2021) 2338-2344. 

  36. D. F. Qin, T. H. Li, X. N. A. Li, J. Feng, T. F. Tang, H. Cheng, A facile fabrication of a hierarchical ZIF-8/MWCNT nanocomposite for the sensitive determination of rutin, Anal. Methods, 13 (2021) 5450-5457. 

  37. R. J. Guo, H. D. Wang, R. Tian, D. L. Shi, H. Li, Y. Li, H. Z. Liu, The enhanced ethanol sensing properties of CNT@ZnSnO 3 hollow boxes derived from Zn-MOF(ZIF-8), Ceram. Int., 46 (2020) 7065-7073. 

  38. Y. J. Ma, G. H. Xu, F. D. Wei, Y. Cen, Y. S. Ma, Y. Y. Song, X. M. Xu, M. L. Shi, S. Muhammad, Q. Hu, A dual-emissive fluorescent sensor fabricated by encapsulating quantum dots and carbon dots into metal-organic frameworks for the ratiometric detection of Cu 2+ in tap water, J. Mater. Chem. C, 5 (2017) 8566-8571. 

  39. H. Guo, X. Q. Wang, N. Wu, M. N. Xu, M. Y. Wang, L. W. Zhang, W. Yang, Onepot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu 2+ sensing, Anal. Methods, 12 (2020) 4058-4063. 

  40. G. M. Li, N. Lv, J. L. Zhang and J. Z. Ni, MnO 2 in situ formed into the pores of C-dots/ZIF-8 hybrid nanocomposites as an effective quencher for fluorescence sensing ascorbic acid, Rsc. Adv., 7 (2017) 16423-16427. 

  41. X. Chang, K. Li, X. R. Qiao, Y. Xiong, F. J. Xia, Q. Z. Xue, ZIF-8 derived ZnO polyhedrons decorated with biomass derived nitrogen-doped porous carbon for enhanced acetone sensing, Sens. Actuators. B, 330 (2021) 129366. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로