$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications 원문보기

Journal of electrochemical science and technology, v.13 no.2, 2022년, pp.167 - 176  

Padha, Bhavya (Department of Physics, University of Jammu) ,  Verma, Sonali (Department of Physics, University of Jammu) ,  Mahajan, Prerna (Department of Physics, University of Jammu) ,  Arya, Sandeep (Department of Physics, University of Jammu)

Abstract AI-Helper 아이콘AI-Helper

Electrochemical impedance spectroscopy (EIS) is a unique non-destructive technique employed to analyze various devices in different energy storage applications. It characterizes materials and interfaces for their properties in heterogeneous systems employing equivalent circuits as models. So far, it...

Keyword

참고문헌 (70)

  1. J. Huang, Y. Gao, J. Luo, S. Wang, C. Li, S. Chen, J. Zhang, J. Electrochem. Soc., 2020, 167(16), 160502. 

  2. X. Liu, J. Zhao, Y. Cao, W. Li, Y. Sun, J. Lu, Y. Men, J. Hu, RSC Adv., 2015, 5(59), 47506-47510. 

  3. O. Gharbi, M.T.T. Tran, B. Tribollet, M. Turmine, V. Vivier, Electrochim. Acta, 2020, 343, 136109. 

  4. X. Jin, Y. Li, J. Jiang, S. Xiao, J. Yang, J. Yao, Ionics, 2021, 27(8), 3291-3299. 

  5. Electrochemical Impedance Spectroscopy. https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Insulators/Electrochemical_Impedance_Spectroscopy (accebed 15 July, 2021). 

  6. Electrochemical Impedance Spectroscopy (EIS). https://www.palmsens.com/knowledgebase-article/electrochemical-impedance-spectroscopy/ (accebed 17 August, 2021). 

  7. I.C.P. Margarit-Mattos, Electrochim. Acta, 2020, 354, 136725. 

  8. F. Ciucci, Curr. Opin. Electrochem., 2019, 13, 132-139. 

  9. A.R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, ACS Appl. Energy Mater., 2020, 3, 66-98. 

  10. H.H. Hernandez, A.M.R. Reynoso, J.C.T. Gonzalez, C.O.G. Moran, J.G.M. Hernandez, A.M. Ruiz, R.O. Cruz, T. Gonzalez, Electrochemical Impedance Spectroscopy, 2020, 137-144. 

  11. G. Instruments, Complex impedance in Corrosion, 2007, 1-30. 

  12. Diffusion impedance. http://lacey.se/science/eis/diffusion-impedance/ (accebed 27 August, 2021). 

  13. X. Dominguez-Benetton, Biocomplexity and bioelectrochemical influence of gasoline pipelines biofilms in carbon steel deterioration: A transmibion lines and transfer functions approach, PhD, Instituto Mexicano del Petroleo, 2007. 

  14. The Constant Phase Element (CPE). http://www.consultrsr.net/resources/eis/cpe1.htm (accebed 13 September, 2021). 

  15. J.C. Martins, J.C.d.M. Neto, R.R. Pabos, L.A. Pocrifka, Solid State Ionics, 2020, 346, 115198. 

  16. R.R. Gaddam, L. Katzenmeier, X. Lamprecht, A.S. Bandarenka, Phys. Chem. Chem., Phys., 2021, 23, 12926-12944. 

  17. L. Carrette, K.A. Friedrich, U. Stimming, Chem. Phys. Chem., 2000, 1(4), 162-193. 

  18. R. O'hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons, 2016. 

  19. Z. He, F. Mansfeld, Energy Environ. Sci., 2009, 2(2), 215-219. 

  20. Y. Fan, E. Sharbrough, H. Liu, Environ. Sci. Technol., 2008, 42(21), 8101-8107. 

  21. P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Appl. Microbiol. Biotechnol., 2007, 77(3), 551-558. 

  22. J.W. Wurst, S.A. Garron, A.M. Dob, Apparatus for measuring internal resistance of wet cell storage batteries having non-removable cell caps, U.S. Patent 5,047,722, 1991. 

  23. S.O. Engblom, M. Wasberg, J. Bobacka, A. Ivaska, Experiences of an on-line Fourier transform faradaic admittance measurement (FT-FAM) system based on digital signal procebors, Contemporary electroanalytical chemistry, Springer, 1990, 21-29. 

  24. R.J. O'Halloran, L.F.G. Williams, C.P. Lloyd, Corrosion, 1984, 40(7), 344-349. 

  25. J. Larminie, A. Dicks, M.S. McDonald, Operational Fuel Cell Voltages, Fuel cell systems explained, John Wiley & Sons, 2003. 

  26. D. Kashyap, P.K. Dwivedi, J.K. Pandey, Y.H. Kim, G.M. Kim, A. Sharma, S. Goel, Int. J. Hydr. Energy, 2014, 39(35), 20159-20170. 

  27. R. De Levie, A.A. Husovsky, J. Electroanal. Chem. Interfacial Electrochem., 1969, 20(2), 181-193. 

  28. F. Davis, S.P. Higson, Biosens. Bioelectron., 2007, 22(7), 1224-1235. 

  29. J.P. Diard, B. Le Gorrec, C. Montella, J. Electroanal. Chem., 1994, 377(1-2), 61-73. 

  30. D.E. Smith, Anal. Chem., 1976, 48(2), 221A-240. 

  31. S.C. Creason, J.W. Hayes, D.E. Smith, J. Electroanal. Chem. Interfacial Electrochem., 1973, 47(1), 9-46. 

  32. K. Darowicki, K. Andrearczyk, J. Power Sources, 2009, 189(2), 988-993. 

  33. A. Arutunow, K. Darowicki, Electrochim. Acta, 2008, 53(13), 4387-4395. 

  34. J.S. Yoo, S.M. Park, Anal. Chem., 2000, 72(9), 2035-2041. 

  35. B.Y. Chang, S.Y. Hong, J.S. Yoo, S.M. Park, J. Phys. Chem. B, 2006, 110(39), 19386-19392. 

  36. J. Hazi, D.M. Elton, W.A. Czerwinski, J. Schiewe, V.A. Vicente-Beckett, A.M. Bond, J. Electroanal. Chem., 1997, 437(1-2), 1-15. 

  37. B.Y. Chang, S.M. Park, Annu. Rev. Anal. Chem., 2010, 3, 207-229. 

  38. G.A. Ragoisha, A.S. Bondarenko, Electrochim. Acta, 2005, 50(7-8), 1553-1563. 

  39. A.S. Bondarenko, G.A. Ragoisha, J. Solid State Electrochem., 2005, 9(12), 845-849. 

  40. H. Yuan, H. Dai, X. Wei, P. Ming, Chem. Eng. J., 2021, 418, 129358. 

  41. C.M.A. Brett, Molecules, 2022, 27(5), 1497. 

  42. X. Zhang, Y. Jiang, L. Huang, W. Chen, D. Brett, Electrochim. Acta, 2021, 391, 138925. 

  43. J. Mitzel, J. Sanchez?Monreal, D. Garcia?Sanchez, P. Gazdzicki, M. Schulze, F. Haubler, J. Hunger, G. Schlumberger, E. Janicka, M. Mielniczek, L. Gawel, Fuel Cells, 2020, 20(4), 403-412. 

  44. S. Simon Araya, F. Zhou, S. Lennart Sahlin, S. Thomas, C. Jeppesen, S. Knudsen Kaer, Energies, 2019, 12(1), 152. 

  45. R. Caponetto, N. Guarnera, F. Matera, E. Privitera, M.G. Xibilia, Application of Electrochemical Impedance Spectroscopy for prediction of Fuel Cell degradation by LSTM neural networks, 29th mediterr. Conference on Control and Automation (MED), IEEE Publications, 2021. 

  46. K. Meng, H. Zhou, B. Chen, Z. Tu, Energy, 2021, 224, 120168. 

  47. A.A. Bojang, H.S. Wu, Catalysts, 2020, 10(7), 782. 

  48. B. Kim, I.S. Chang, R.M. Dinsdale, A.J. Guwy, Electrochim. Acta, 2021, 366, 137388. 

  49. R. Ahmed, K. Reifsnider, Study of influence of electrode geometry on impedance spectroscopy, International Conference on Fuel Cell Science, Engineering and Technology, 2010, 44052, 167-175. 

  50. K. Ariyoshi, M. Tanimoto, Y. Yamada, Electrochim. Acta, 2020, 364, 137292. 

  51. A.K. Manohar, O. Bretschger, K.H. Nealson, F. Mansfeld, Bioelectrochemistry, 2008, 72(2), 149-154. 

  52. E. Martin, B. Tartakovsky, O. Savadogo, Electrochim. Acta, 2011, 58, 58-66. 

  53. Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Bioelectrochemistry, 2008, 74, 78-82. 

  54. H.P. Djoko, E. Umar, G.S. Dani, Evaluation corrosion behavior on commercial stainleb steel SS 304 in Nano fluids water-Al2O3 system at different pH by Electrochemical Impedance Spectroscopy methods, Journal of Physics: Conference Series, IOP Publishing, 2020, 1428(1), 012025. 

  55. K. Rabaey, J. Rodriguez, L.L. Blackall, J. Keller, P. Grob, D. Batstone, W. Verstraete, K.H. Nealson, I.S.M.E. J., 2007, 1(1), 9-18. 

  56. G. Lepage, F.O. Albernaz, G. Perrier, G. Merlin, Bioresour. Technol., 2012, 124, 199-207. 

  57. Y. Huang, Z. He, F. Mansfeld, Bioelectrochemistry, 2010, 79(2), 261-264. 

  58. A.B. Dos Santos, J. Traverse, F.J. Cervantes, J.B. Van Lier, Biotechnol. Bioeng., 2005, 89(1), 42-52 . 

  59. R.P. Ramasamy, V. Gadhamshetty, L.J. Nadeau, and G.R. Johnson, Biotechnol. Bioeng., 2009, 104(5), 882-891. 

  60. M. Li, Z. Bai, Y. Li, L. Ma, A. Dai, X. Wang, D. Luo, T. Wu, P. Liu, L. Yang, K. Amine, Nat. Commun., 2019, 10, 1890. 

  61. B. Wei, J. C. Tokash, F. Zhang, Y. Kim, B. E. Logan, Electrochim. Acta, 2013, 89, 45-51. 

  62. F. Qian, M. Baum, Q. Gu, D.E. Morse, Lab Chip, 2009, 9(21), 3076-3081. 

  63. R. Cheng, J. Xu, X. Wang, Q. Ma, H. Su, W. Yang, Q. Xu, Front. Chem., 2020, 8, 619. 

  64. S. Buteau, J.R. Dahn, J. Electrochem. Soc., 2019, 166, A1611. 

  65. S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, M.E. Orazem, Nat. Rev. Methods, Primers, 2021, 1, 41. 

  66. X. Zhao, H. Zhuang, S.C. Yoon, Y. Dong, W. Wang, W. Zhao, J. Food Qual., 2017, 2017, 16. 

  67. D. Qu, G. Wang, J. Kafle, J. Harris, L. Crain, Z. Jin, D. Zheng, Small Methods, 2018, 2(8), 1700342. 

  68. H. Schichlein, A.C. Muller, M. Voigts, A. Krugel, E. Ivers-Tiffee, J. Appl. Electrochem., 2002, 32(8), 875-882. 

  69. A. Weib, S. Schindler, S. Galbiati, M.A. Danzer, R. Zeis, Electrochim. Acta, 2017, 230, 391-398. 

  70. B. Manikandan, V. Ramar, C. Yap, P. Balaya, J. Power Sources, 2017, 361, 300-309. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로