$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향
Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.25 no.2, 2022년, pp.51 - 68  

김예랑 (서울시립대학교 화학공학과) ,  박지혜 (서울시립대학교 화학공학과) ,  황유진 (서울시립대학교 화학공학과) ,  정철수 (서울시립대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

리튬금속전지는 높은 에너지 밀도를 구현시킬 수 있음에도 불구하고, 단락, 낮은 쿨롱 효율, 용량 손실, 사이클 성능 감소 등의 문제를 초래하는 덴드라이트 성장을 억제시키는 기술은 아직 학술연구 단계에 머물러 있다. 본 논문에서는 최근까지 발표된 리튬금속전극에서 덴드라이트 성장을 억제시킬 수 있는 방법을 4가지로 분류하여 분석해보았다. 즉, 리튬금속전극의 부피 팽창에 대응할 수 있는 유연한 SEI (solid electrolyte interface) 층, 덴드라이트 성장을 물리적으로 억제시킬 수 있는 SEI 지지층, 균일한 리튬 확산을 유도하여 리튬 성장을 조절하는 SHES (self-healing electrostatic shield) 메커니즘, 그리고 리튬의 균일한 전착을 유도하는 마이크로패터닝 등에 대해 연구된 사례들의 장단점을 분석하여, 리튬금속전극의 실용화 연구에 도움을 주고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for de...

주제어

표/그림 (20)

참고문헌 (77)

  1. G. N. Lewis and F. G. Keyes, The potential of the lithium electrode, J. Am. Chem. Soc., 35(4), 340-344 (1913). 

  2. M. V. Reddy, A. Mauger, C. M. Julien, A. Paolella, and K. Zaghib, Brief history of early lithium-battery development, Materials, 13(8), 1884 (2020). 

  3. A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 11(1), 1-9 (2020). 

  4. C. A. Vincent, Lithium batteries: a 50-year perspective, 1959-2009, Solid State Ionics, 134(1-2), 159-167 (2000). 

  5. Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, and B. Guo, An overview on the advances of LiCoO 2 cathodes for lithium-ion batteries, Adv. Energy Mater., 11(2), 2000982 (2021). 

  6. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review', Chem. Rev., 117(15), 10403-10473 (2017). 

  7. Q. Zhang, S. Liu, Y. Lu, L. Xing, and W. Li, Artificial interphases enable dendrite-free li-metal anodes, J. Energy Chem., 58, 198-206 (2021). 

  8. D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, S. Zhang, G. Jiang, L. Chen, A. Yu, and X. Wang, Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries' Nat. Commun., 12, 186. (2021). 

  9. L. Ma, J. Cui, S. Yao, X. Liu, Y. Luo, X. Shen, and J.-K. Kim, Dendrite-free lithium metal and sodium metal batteries' Energy Storage Mater., 27, 522-554 (2020). 

  10. N. W. Li, Y. Shi, Y. X. Yin, X. X. Zeng, J. Y. Li, C.-J. Li, L.-J. Wan, R. Wen, and Y.-G. Guo, A flexible solid electrolyte interphase layer for long-life lithium metal anodes, Angew. Chem. Int. Ed., 57(6), 1505-1509 (2018). 

  11. H. Huo, J. Gao, N. Zhao, D. Zhang, N.G. Holmes, X. Li, Y. Sun, J. Fu, R. Li, X. Guo, and X. Sun, A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries, Nat. Commun., 12(1), 1-10 (2021). 

  12. H. Liu, H. Zhou, B. S. Lee, X. Xing, M. Gonzalez, and P. Liu, Suppressing lithium dendrite growth with a single-component coating, ACS Appl. Mater. Interfaces, 9(36), 30635-30642 (2017). 

  13. H. Liu, X. Wang, H. Zhou, H. D. Lim, X. Xing, Q. Yan, Y. S. Meng, and P. Liu, Structure and solution dynamics of lithium methyl carbonate as a protective layer for lithium metal, ACS Appl. Energy Mater., 1(5), 1864-1869 (2018). 

  14. Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, and C. Wu, Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode, Energy Storage Mater., 16, 411-418 (2019). 

  15. Y. Yuan, F. Wu, G. Chen, Y. Bai, and C. Wu, Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode, J. Energy Chem., 37, 197-203 (2019). 

  16. H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, and J. Wang, Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode, Adv. Energy Mater., 9(22), 1900858 (2019). 

  17. F. Liu, L. Wang, Z. Zhang, P. Shi, Y. Feng, Y. Yao, S. Ye, H. Wang, X. Wu, and Y. Yu, A mixed lithium-ion conductive Li 2 S/Li 2 Se protection layer for stable lithium metal anode, Adv. Funct. Mater., 30(23), 2001607 (2020). 

  18. J, Yang, C. Hu, Y. Jia, Y. Pang, L. Wang, W. Liu, and X. Sun, Surface restraint synthesis of an organic-inorganic hybrid layer for dendrite-free lithium metal anode, ACS Appl. Mater. Interfaces, 11(9), 8717-8724 (2019). 

  19. J. Zhu, J. Yang, J. Zhou, T. Zhang, L. Li, J. Wang, and Y. Nuli, A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries, J. Power Sources, 366, 265-269 (2017). 

  20. G. Li, Q. Huang, X. He, Y. Gao, D. Wang, S. H. Kim, and D. Wang, Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries, ACS Nano, 12(2), 1500-1507 (2018). 

  21. G. Li, Y. Gao, X. He, Q. Huang, S. Chen, S. H. Kim, and D. Wang, Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries, Nat. Commun., 8(1), 1-10 (2017). 

  22. Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, and Y. Cui, An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Adv. Mater., 29(10), 1605531 (2017). 

  23. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Qi. Wang, and J. Zhu, Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29(2), 1603755 (2017). 

  24. S. Lee, D. Seok, Y. Jeong, and H. Sohn, Surface Modification of Li metal electrode with PDMS/GO composite thin film: Controlled growth of Li layer and improved performance of lithium metal battery (LMB), Membr. J., 30(1), 38-45 (2020). 

  25. H. Lee, D. J. Lee, Y. J. Kim, J. K. Park, and H. T. Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries, J. Power Sources, 284, 103-108 (2015). 

  26. W. J. Kwak, J. Park, T. T. Nguyen, H. Kim, H. R. Byon, M. Jang, and Y.-K. Sun, A dendrite-and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries, J. Mater. Chem. A, 7(8), 3857-3862 (2019). 

  27. W. J. Kwak, S. J. Park, H. G. Jung, and Y.-K. Sun, Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O 2 batteries, Adv. Energy Mater., 8(9), 1702258 (2018). 

  28. F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, and J.-G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135(11), 4450-4456 (2013). 

  29. S. Li, S. Fang, H. Dou, and X. Zhang, RbF as a dendriteinhibiting additive in lithium metal batteries, ACS Appl. Mater. Interfaces, 11(23), 20804-20811 (2019). 

  30. D. Wang, H. Liu, M. Li, D. Xia, J. Holoubek, Z. Deng, M. Yu, J.Tian, Z. Shan, S. Pi. Ong, P. Liu, and Z. Chen, A long-lasting dual-function electrolyte additive for stable lithium metal batteries, Nano Energy, 75, 104889 (2020). 

  31. H. Ye, Y. X. Yin, S. F. Zhang, Y. Shi, L. Liu, X. X. Zeng, R. Wen, Y.-G. Guo, and L.-J. Wan, Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode, Nano Energy, 36, 411-417 (2017). 

  32. J. Park, J. Jeong, Y. Lee, M. Oh, M.-H. Ryou, and Y. M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries, Adv. Mater. Interfaces, 3(11), 1600140 (2016). 

  33. Y. J. Kim, H. S. Jin, D. H. Lee, J. Choi, W. Jo, H. Noh, J. Lee, H. Chu, H. Kwack, F. Ye, and H. Lee, Guided Lithium Deposition by Surface Micro-Patterning of Lithium-Metal Electrodes, Chem. Electro. Chem., 5(21), 3169-3175 (2018). 

  34. W. B. Jung, O. B. Chae, M. Kim, Y. Kim, Y.J. Hong, J. Y. Kim, S. Choi, D. Y. Kim, S. Moon, J. Suk, Y. Kang, M. Wu, and H.-T. Jung, Effect of highly periodic Au nanopatterns on dendrite suppression in lithium metal batteries, ACS Appl. Mater. Interfaces, 13(51), 60978-60986 (2021). 

  35. S. Schweidler, L. Biasi, A. Schiele, P. Hartmann, T. Brezesinski, and J. Janek, Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study, J. Phys. Chem. C, 122(16), 8829-8835 (2018). 

  36. Z. Liu, Y. Qi, Y. X. Lin, L. Chen, P. Lu, and L. Q. Chen, Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth, J. Electrochem. Soc., 163(3), A592 (2016). 

  37. J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, J. Power Sources, 74(2), 219-227 (1998). 

  38. E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model, J. Electrochem. Soc., 126(12), 2047 (1979). 

  39. A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries., npj Computational Materials, 4(1), 1-26 (2018). 

  40. Y. Feng, C. Zhang, X. Jiao, Z. Zhou, and J. Song, Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework, Energy Storage Mater., 25, 172-179 (2020). 

  41. J. Zeng, Q. Liu, D. Jia, R. Liu, S. Liu, B. Zheng, Y. Zhu, R. Fu, and D. Wu, A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries, Energy Storage Mater., 41, 697-702 (2021). 

  42. J. Li, Z. Kong, X. Liu, B. Zheng, Q. H. Fan, E. Garratt, T. Schuelke, K. Wang, H. Xu, H. Jin, Strategies to anode protection in lithium metal battery: A review, InfoMat, 3(12), 1333-1363 (2021). 

  43. T. B. T. Truong, Y.-R. Chen, G.-Y. Lin, H.-T. Lin, Y.-S. Wu, C.-C. Yang, Lithium polyacrylate polymer coating enhances the performance of graphite/silicon/carbon composite anodes, Electrochim. Acta, 365, 137387 (2021). 

  44. N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J.-H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy, G. R. Goward, I. Halalay, B. R. Powell, and A. Manthiram, Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-Voltage Li-Ion Batteries, Adv. Energy Mater., 5(23), 1501008 (2015). 

  45. J. Li, D.-B. Le, P. P. Ferguson, and J. R. Dahn, Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries, Electrochim. Acta, 55(8), 2991-2995 (2010). 

  46. Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang, and S. Hirano, Silicon microparticle anodes with self-healing multiple network binder, Joule, 2(5), 950-961 (2018). 

  47. X. Wang, R. Kerr, F. Chen, N. Goujon, J. M. Pringle, D. Mecerreyes, M. Forsyth, and P. C. Howlett, Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes, Adv. Mater., 32(18), 1905219 (2020). 

  48. W. Liu, P. Liu, and D, Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10(43), 2002297 (2020). 

  49. Q. Zhang, J. Pan, P. Lu, Z. Liu, M. W. Verbrugge, B. W. Sheldon, Y.-T. Cheng, Y. Qi, and X. Xiao, Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries, Nano Lett., 16(3), 2011-2016 (2016). 

  50. J. Pan, Y.-T. Cheng, and Y. Qi, General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes, Phys. Rev. B, 91(13), 134116 (2015). 

  51. Y. Ozhabes, D. Gunceler, and T. A. Arias, Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression, arXiv, 1504.05799, (2015). 

  52. S. Choudhury and L. A. Archer, Lithium fluoride additives for stable cycling of lithium batteries at high current densities, Adv. Electron. Mater., 2(2), 1500246 (2016). 

  53. Q. Wu, Z. Yao, A. Du, H. Wu, M. Huang, J. Xu, F. Cao, and C. Li, Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium-metal batteries, J. Mater. Chem. A, 9(9), 5606-5618 (2021). 

  54. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7(2), 513-537 (2014). 

  55. S. Jin, Z. Sun, Y. Guo, Z. Qi, C. Guo, X. Kong, Y. Zhu, and H. Ji, High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes, Adv. Mater., 29(38), 1700783 (2017). 

  56. R. A. Huggins, Solid Electrolyte Battery Materials, STANFORD UNIV CALIF CENTER FOR MATERIALS RESEARCH, 1977. 

  57. J. T. Lee, H. Kim, M. Oschatz, D. C. Lee, F. Wu, H.-T. Lin, B. Zdyrko, W. I. Cho, S. Kaskel, and G. Yushin, Micro-and Mesoporous Carbide-Derived Carbon-Selenium Cathodes for High-Performance Lithium Selenium Batteries, Adv. Energy Mater., 5(1), 1400981 (2015). 

  58. Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu, and L. A. Archer, Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries, Angew. Chem. Int. Ed., 57(4), 992-996 (2018). 

  59. G. Hou, C. Ci, D. Salpekar, Q. Ai, Q. Chen, H. Guo, L. Chen, X. Zhang, J. Cheng, K. Kato, R. Vajtai, P. Si, G. Babu, L. Ci, and P. M. Ajayan, Stable lithium metal anode enabled by an artificial multi-phase composite protective film, J. Power Sources, 448, 227547 (2020). 

  60. X.-B. Cheng, C. Yan, H.-J. Peng, J.-Q. Huang, S.-T. Yang, and Q. Zhang, Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes, Energy Storage Mater., 10, 199-205 (2018). 

  61. H. Wada, M. Menetrier, A. Levasseur, and P. Hagenmuller, Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses, Mater. Res. Bull., 18(2), 189-193 (1983). 

  62. H. Ha, J. Park, S. Ando, C. B. Kim, K. Nagai, B. D. Freeman, and C. J. Ellison, Gas permeation and selectivity of poly (dimethylsiloxane)/graphene oxide composite elastomer membranes, J. Membr. Sci., 518, 131-140 (2016). 

  63. S. Di, X. Nie, G. Ma, W. Yuan, Y. Wang, Y. Liu, S. Shen, and N. Zhang, Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase, Energy Storage Mater., 43, 375-382 (2021). 

  64. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29(2), 1603755 (2017). 

  65. M. Liu, J. Sun, and Q. Chen, Influences of heating temperature on mechanical properties of polydimethylsiloxane, Sens. Actuator A Phys., 151(1), 42-45 (2009). 

  66. H. Ha, J. Park, K. R. Ha, B. D. Freeman, and C. J. Ellison, Synthesis and gas permeability of highly elastic poly (dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers, Polymer, 93, 53-60 (2016). 

  67. D. J. Lee, H. Lee, Y. J. Kim, J. K. Park, and H. T. Kim, Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode, Adv. Mater., 28(5), 857-863 (2016). 

  68. W.-J. Kwak, H.-G. Jung, D. Aurbach, and Y.-K. Sun, Optimized bicompartment two solution cells for effective and stable operation of Li-O2 batteries, Adv. Energy Mater., 7(21), 1701232 (2017). 

  69. H. Ohtaki, Structural studies on solvation and complexation of metal ions in nonaqueous solutions, Pure Appl. Chem., 59(9), 1143-1150 (1987). 

  70. H. Xiang, D. Mei, P. Yan, P. Bhattacharya, S. D. Burton, A.W. Cresce, R. Cao, M. H. Engelhard, M. E. Bowden, Z. Zhu, B. J. Polzin, C.-M. Wang, K. Xu, J.-G. Zhang, and W. Xu, The role of cesium cation in controlling interphasial chemistry on graphite anode in propylene carbonate-rich electrolytes, ACS Appl. Mater. Interfaces, 7(37), 20687-20695 (2015). 

  71. F. Ding, W. Xu, X. Chen, J. Zhang, Y. Shao, M. H. Engelhard, Y. Zhang, T. A. Blake, G. L. Graff, X. Liu, and J.-G. Zhang, Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism, J. Phys. Chem. C, 118(8), 4043-4049 (2014). 

  72. Y. Kameda, Y. Umebayashi, M. Takeuchi, M. A. Wahab, S. Fukuda, S.-I. Ishiguro, M. Sasaki, Y. Amo, and T. Usuki, Solvation structure of Li+ in concentrated LiPF6-propylene carbonate solutions, J. Phys. Chem. B, 111(22), 6104-6109 (2007). 

  73. S. H. Lee and J. C. Rasaiah, Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25 C, J. Chem. Phys., 101(8), 6964-6974 (1994). 

  74. S. H. Lee and J. C. Rasaiah, Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 C, J. Phys. Chem., 100(4), 1420-1425 (1996). 

  75. Q. Xu, Y. Yang, and H. Shao, Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries, Electrochim. Acta, 212, 758-766 (2016). 

  76. J.-L. Lin, C. Huang, C.-J. M. Chin, and J. R. Pan, The origin of Al (OH) 3-rich and Al13-aggregate flocs composition in PACl coagulation, Water Res., 43(17), 4285-4295 (2009). 

  77. Q. Li, B. Quan, W. Li, J. Lu, J. Zheng, X. Yu, J. Li, and H. Li, Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure, Nano Energy, 45, 463-470 (2018). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로