$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

저융점 Sn-Bi 솔더의 신뢰성 개선 연구
Improvement of Reliability of Low-melting Temperature Sn-Bi Solder 원문보기

마이크로전자 및 패키징 학회지 = Journal of the Microelectronics and Packaging Society, v.29 no.2, 2022년, pp.1 - 10  

정민성 (충북대학교 신소재공학과) ,  김현태 (충북대학교 신소재공학과) ,  윤정원 (충북대학교 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

최근 반도체 소자는 모바일 전자제품wearable 및 flexible한 소자와 기판의 다양한 활용으로 많은 분야에서 폭넓게 사용되고 있다. 이들 반도체 칩 접합 공정 중 기판과 솔더열팽창 계수(CTE)의 차이와 기판 및 부품 전체에 인가되는 과도한 열 영향은 소자의 성능 및 신뢰성에 영향을 주며, 최종적으로 휨(warpage) 현상 및 장기 신뢰성 저하 등을 초래한다. 이러한 문제점을 개선하기 위해 저온에서 공정이 가능한 저융점 솔더에 대한 연구가 활발히 진행되고 있다. Sn-Bi, Sn-In 등 다양한 저융점 솔더 합금 중 Sn-Bi 솔더는 높은 항복 강도, 적절한 기계적 특성 및 저렴한 가격 등의 이점이 있어 유망한 저온 솔더로 각광받고 있다. 그러나 Bi의 높은 취성 특성 등 단점으로 인해 솔더 합금의 개선이 필요하다. 본 review 논문에서는 다양한 미량 원소와 입자를 첨가하여 Sn-Bi 소재의 기계적 특성 개선을 위한 연구 동향을 소개하며 이를 비교 분석하였다.

Abstract AI-Helper 아이콘AI-Helper

Recently, semiconductor devices have been used in many fields owing to various applications of mobile electronics, wearable and flexible devices and substrates. During the semiconductor chip bonding process, the mismatch of coefficient of therm al expansion (CTE) between the substrate and the solder...

주제어

표/그림 (13)

참고문헌 (53)

  1. F. Wang, D. Li, Z. Zhang, M. Wu, and C. Yan, "Improvement on interfacial structure and properties of Sn-58Bi/Cu joint using Sn-3.0Ag-0.5Cu solder as barrier", J. Mater. Sci.: Mater. Electron., 28(24), 19051-19060 (2017). 

  2. K. Suganuma, "Advances in lead-free electronics soldering", Curr. Opin. Solid State Mater. Sci., 5(1), 55-64 (2001). 

  3. H. Ma, and J. C. Suhling, "A review of mechanical properties of lead-free solders for electronic packaging, J. Mater. Sci., 44(5), 1141-1158 (2009). 

  4. C. Zhang, S. D. Liu, G. T. Qian, Z. H. O. U. Jian, and X. U. E. Feng, "Effect of Sb content on properties of Sn-Bi solders", Trans. Nonferrous Met. Soc. China, 24(1), 184-191 (2014). 

  5. O. Mokhtari, and H. Nishikawa, "Effects of In and Ni addition on microstructure of Sn-58Bi solder joint", J. Electron. Mater., 43(11), 4158-4170 (2014). 

  6. R. S. Sidhu, R. Aspandiar, S. Vandervoort, D. Amir, and G. Murtagian, "Impact of processing conditions and solder materials on surface mount assembly defects", JOM., 63(10), 47-51 (2011). 

  7. Z. Zhao, C. Chen, C. Y. Park, Y. Wang, L. Liu, G. Zou, and Q. Wang, "Effects of package warpage on head-in-pillow defect", Mater. Trans., 56(7), 1037-1042 (2015). 

  8. Z. Zhu, Y. C. Chan, and F. Wu, "Failure mechanisms of solder interconnects under current stressing in advanced electronic packages: An update on the effect of alternating current (AC) stressing", Microelectron. Reliab., 91, 179-182 (2018). 

  9. K. N. Tu, Y. Liu, and M. Li, "Effect of Joule heating and current crowding on electromigration in mobile technology", Appl. Phys. Rev., 4(1), 011101 (2017). 

  10. D. Xie, D. Shangguan, D. Geiger, D. Gill, V. Vellppan, and K. Chinniah, "Head in pillow (HIP) and yield study on SIP and PoP assembly", Proc. 2009 59th IEEE Electronic Components and Technology Conference (ECTC), California, 752, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009). 

  11. L. T. Chen, and C. M. Chen, "Electromigration study in the eutectic SnBi solder joint on the Ni/Au metallization", J. Mater. Res., 21(4), 962-969 (2006). 

  12. H. W. Miao, J. G. Duh, and B. S. Chiou, "Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints", J. Mater. Sci.: Mater. Electron., 11(8), 609-618 (2000). 

  13. F. Wang, H. Chen, Y. Huang, L. Liu, and Z. Zhang, "Recent progress on the development of Sn-Bi based low-temperature Pb-free solders", J. Mater. Sci.: Mater. Electron., 30(4), 3222-3243 (2019). 

  14. J. E. Lee, K. S. Kim, and S. H. Huh, "Development of SnZn Based Low Temperature Lead-Free Solder for Improvement of Oxidation Resistance (in Kor.)", JWJ, 29(5), 16-23 (2011). 

  15. R. Raj, P. Shrivastava, N. Jindal, S. N. Alam, N. Naithani, M. Padhy, and M. M. Abbas, "Development and characterization of eutectic Sn-Zn, Sn-Ag, Sn-Bi and Sn-Cu solder alloys", J. Mater. Res., 110(12), 1150-1159 (2019). 

  16. L. Pu, Y. Huo, X. Zhao, K. N. Tu, and Y. Liu, "Undercooling and microstructure analysis for the design of low melting point solder", Proc. 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, 1, IEEE Electronic Devices Society (EDS) (2021). 

  17. S. Cheng, C. M. Huang, and M. Pecht, "A review of lead-free solders for electronics applications", Microelectron. Reliab., 75, 77-95 (2017). 

  18. J. H. Park, J. C. Park, S. Shin, and K. W. Paik, "Low-Temperature Bonding of PZT (PbZrTiO3) and Flexible Printed Circuits Using Sn52In Solder Anisotropic Conductive Films for Flexible Ultrasonic Transducers", IEEE Trans. Compon. Packaging Manuf. Technol., 9(11), 2152-2159 (2019). 

  19. W. R. Osorio, L. C. Peixoto, L. R. Garcia, N. Mangelinck-Noel, and A. Garcia, "Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys", J. Alloys Compd., 572, 97-106 (2013). 

  20. S. Liu, Z. Liu, L. Liu, T. Song, W. Liu, Y. Tan, Z. San, and S. Huang, "Electromigration behavior of Cu/Sn-58Bi-1Ag/Cu solder Joints by ultrasonic soldering process", J. Mater. Sci.: Mater. Electron., 31(15), 11997-12003 (2020). 

  21. Z. Mei, and J. W. Morris, "Characterization of eutectic SnBi solder joints", J. Electron. Mater., 21(6), 599-607 (1992). 

  22. S. Liu, T. Song, W. Xiong, L. Liu, and S. Huang, "Effects of Ag on the microstructure and shear strength of rapidly solidified Sn-58Bi solder", J. Mater. Sci.: Mater. Electron., 30(7), 6701-6707 (2019). 

  23. H. E. Peng, X. C. Lu, T. S. Lin, H. X. Li, A. N. Jing, M. A. Xin, and Y. Y. Qian, "Improvement of mechanical properties of Sn-58Bi alloy with multi-walled carbon nanotubes", Trans. Nonferrous Met. Soc. China, 22, 692-696 (2012). 

  24. L. Yang, W. Zhou, Y. Ma, X. Li, Y. Liang, W. Cui, and P. Wu, "Effects of Ni addition on mechanical properties of Sn58Bi solder alloy during solid-state aging", Mater. Sci. Eng. A, 667, 368-375 (2016). 

  25. Y. Wei, Y. Liu, L. Zhang, and X. Zhao, "Effects of endogenous Al and Zn phases on mechanical properties of Sn58Bi eutectic alloy", Mater. Charact., 175, 111089 (2021). 

  26. D. P. Jiang, Z. X. Yao, L. M. Yin, G. Wang, D. Li, and X. K. Tian, "Effect of minor Ag and Cu additions on melting characteristics, wettability and microstructures of Sn58Bi solder", Proc. 2017 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, 1098, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2017). 

  27. C. J. Lee, K. D. Min, H. J. Park, and S. B. Jung, "Mechanical properties of Sn-58wt% Bi solder containing Ag-decorated MWCNT with thermal aging tests", J. Alloys Compd., 820, 153077 (2020). 

  28. X. Liu, M. Huang, C. M. L. Wu, and L. Wang, "Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder", J. Mater. Sci.: Mater. Electron., 21(10), 1046-1054 (2010). 

  29. R. M. Shalaby, "Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys", Mater. Sci. Eng. A, 560, 86-95 (2013). 

  30. H. Kang, B. Baek, and J. P. Jung, "Recent Low Temperature Solder of SnBi and Its Bonding Characteristics (in Kor.)", JWJ, 38(6), 576-583 (2020). 

  31. Y. Maruya, H. Hata, I. Shohji, and S. Koyama, "Bonding characteristics of Sn-57Bi-1Ag low temperature lead-free solder to gold-plated copper", Procedia Eng., 184, 223-230 (2017). 

  32. M. McCormack, H. S. Chen, G. W. Kammlott, and S. Jin, "Significantly improved of Bi-Sn solder alloys mechanical properties by Ag-doping", J. Electron. Mater., 26(8), 954-958 (1997). 

  33. Z. Wang, Q. K. Zhang, Y. X. Chen, and Z. L. Song, "Influences of Ag and In alloying on Sn- Bi eutectic solder and SnBi/Cu solder joints", J. Mater. Sci.: Mater. Electron., 30(20), 18524-18538 (2019). 

  34. W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, "Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy", J. Electron. Mater., 37(7), 982-991 (2008). 

  35. M. Li, Y. Tang, Z. Li, M. Zhu, and W. Wang, "Microstructure and mechanical properties of Sn-58Bi eutectic alloy with Cu/P addition", Mater. Res. Express., 7(11), 116502 (2020). 

  36. Q. S. Zhu, H. Y. Song, H. Y. Liu, Z. G. Wang, and J. K. Shang, "Effect of Zn addition on microstructure of Sn-Bi joint", Proc. 2009 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPTHDP), Beijing, 1043, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009). 

  37. S. Zhou, C. H. Yang, S. K. Lin, A. N. AlHazaa, O. Mokhtari, X. Liu, and H. Nishikawa, "Effects of Ti addition on the microstructure, mechanical properties and electrical resistivity of eutectic Sn58Bi alloy", Mater. Sci. Eng. A, 744, 560-569 (2019). 

  38. A. T. Tan, A. W. Tan, and F. Yusof, "Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions", Sci. Technol. Adv. Mater., (2015). 

  39. L. Yang, J. Dai, Y. Zhang, Y. Jing, J. Ge, and H. Liu, "Influence of BaTiO3 nanoparticle addition on microstructure and mechanical properties of Sn-58Bi solder", J. Electron. Mater., 44(7), 2473-2478, (2015). 

  40. N. Hansen, "Hall-Petch relation and boundary strengthening", Scr. Mater., 51(8), 801-806 (2004). 

  41. S. Tikale, and K. Narayan Prabhu, "Bond shear strength of Al2O3 nanoparticles reinforced 2220-capacitor/SAC305 solder interconnects reflowed on bare and Ni-coated copper substrate", J. Mater. Sci., 32(3), 2865-2886 (2021). 

  42. N. Jiang, L. Zhang, Z. Q. Liu, L. Sun, M. Y. Xiong, M. Zhao, and K. K. Xu, "Influences of doping Ti nanoparticles on microstructure and properties of Sn58Bi solder", J. Mater. Sci.: Mater. Electron., 30(19), 17583-17590 (2019). 

  43. A. Singh, R. Durairaj, and K. S. How, "Effect Of 3% Molybdenum (Mo) Nanoparticles on The Melting, Microstructure and Hardness Properties of As-Reflowed Low Mass Sn-58Bi (SB) Solder Alloy", J. Adv. Res. Fluid Mech. Therm. Sci., 77(1), 69-87 (2021) 

  44. B. Kim, H. Choi, H. Jeon, D. Lee, and Y. Sohn, "Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints (in Kor.)", J. Microelectron. Packag. Soc. 28(2), 95-103 (2021). 

  45. Y. Li, and Y. C. Chan, "Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58BiAg composite solders", J. Alloys Compd., 645, 566-576 (2015). 

  46. T. Nishizawa, I. Ohnuma, and K. Ishida, "Examination of the Znenr relationship between grain size and particle dispersion", Mater. Trans. JIM, 38(11), 950-956 (1997). 

  47. X. Li, Y. Ma, W. Zhou, and P. Wu, "Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys", Mater. Sci. Eng. A, 684, 328-334 (2017). 

  48. L. Shen, P. Septiwerdani, and Z. Chen, "Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation", Mater. Sci. Eng. A, 558, 253-258 (2012). 

  49. D. Grivas, K. L. Murty, and J. W. Morris Jr, "Deformation of Pb Sn eutectic alloys at relatively high strain rates", Acta Metall., 27(5), 731-737 (1979). 

  50. L. Yang, C. Du, J. Dai, N. Zhang, and Y. Jing, "Effect of nanosized graphite on properties of Sn-Bi solder" J. Mater. Sci.: Mater. Electron., 24(11), 4180-4185 (2013). 

  51. L. Yang, W. Zhou, Y. Liang, W. Cui, and P. Wu, "Improved microstructure and mechanical properties for Sn58Bi solder alloy by addition of Ni-coated carbon nanotubes", Mater. Sci. Eng. A, 642, 7-15 (2015). 

  52. S. Amares, R. Durairaj, and S. H. Kuan, "Experimental Study on the Melting Temperature, Microstructural and Improved Mechanical Properties of Sn58Bi/Cu Solder Alloy Reinforced with 1%, 2% and 3% Zirconia (ZrO2) Nanoparticles", Arch. Metall. Mater., 66, 407-418 (2021). 

  53. W. Zhu, Y. Ma, X. Li, W. Zhou, and P. Wu, "Effects of Al2O3 nanoparticles on the microstructure and properties of Sn58Bi solder alloys", J. Mater. Sci.: Mater. Electron., 29(9), 7575-7585 (2018). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로