$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

산성 pH 조건에서 차아염소산나트륨의 항균 활성 향상
Enhanced Antibacterial Activity of Sodium Hypochlorite under Acidic pH Condition 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.50 no.2, 2022년, pp.211 - 217  

손현빈 (금오공과대학교응용화학과) ,  배원빈 (금오공과대학교응용화학과) ,  지광환 (금오공과대학교응용화학과)

초록
AI-Helper 아이콘AI-Helper

차아염소산나트륨(NaClO)은 병원 및 식품산업 분야에서 널리 사용되는 소독제로 세균, 곰팡이, 바이러스에 대해서도 항균 활성이 있다. 차아염소산나트륨의 항균 활성은 용액의 pH에 의해 조절되는 안정적인 HClO 농도의 유지에 있다. 차아염소산(HClO)은 화학적으로 중성이므로 세균의 막에 쉽게 침투할 수 있으며 차아염소산나트륨의 항균 활성은 차아염소산염 이온(ClO-)보다는 용액 내 HClO 농도에 의존하리라 사료된다. 본 연구에서 pH 조절에 따른 차아염소산나트륨의 항균 활성을 time kill test와 차아염소산나트륨 처리 전후의 활성산소종(ROS) 및 ATP 농도 변화로 조사하였다. 또한 전계방출형 주사 전자 현미경(FE-SEM)을 통하여 세포벽의 파괴정도를 확인하였다. pH 5 조건에서 5 ppm 차아염소산나트륨은 Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) 균에 대하여 99.9%의 항균 활성을 나타내었고, ROS 생성량은 pH 7 조건보다 48% 증가하였다. 또한, pH 5 조건의 차아염소산나트륨에 노출된 E. coli와 S. aureus의 ATP 농도가 각각 94%와 91% 감소하였다. FE-SEM 결과, pH 5 조건에 노출된 균의 세포벽이 파괴된 것을 확인하였다. 본 연구결과를 종합해보면, pH를 조절하는 것 만으로 5 ppm 농도의 차아염소산나트륨의 항균 활성을 향상시킬 수 있음을 시사한다.

Abstract AI-Helper 아이콘AI-Helper

Sodium hypochlorite (NaClO) is a disinfectant widely used in hospitals and food industries because of its antimicrobial activity against not only bacteria but also fungi and virus. The antibacterial activity of NaClO lies in the maintenance of a stable hypochlorous acid (HClO) concentration, which i...

주제어

표/그림 (5)

참고문헌 (38)

  1. Periyasamy T, Asrafali S, Shanmugam M, Kim S-C. 2021. Development of sustainable and antimicrobial film based on polybenzoxazine and cellulose. Int. J. Biol. Macromol. 170: 664-673. 

  2. Song J-H. 2011. Antimicrobial resistance in Gram-positive cocci: Past 50 years, present and future. Infect. Chemother. 43: 443-449. 

  3. Kerkaert B, Mestdagh F, Cucu T, Aedo PR, Ling SY, De Meulenaer B. 2011. Hypochlorous and peracetic acid induced oxidation of dairy proteins. J. Agric. Food Chem. 59: 907-914. 

  4. Coates D. 1985. A comparison of sodium hypochlorite and sodium dichloroisocyanurate products. J. Hosp. Infect. 6: 31-40. 

  5. Topic F, Marrett JM, Borchers TH, Titi HM, Barrett CJ, Friscic T. 2021. After 200 years: The structure of bleach and characterization of hypohalite ions by single-crystal X-ray diffraction. Angew. Chem. Int. Ed. Engl. 60: 24400-24405. 

  6. Lee D, Howlett J, Pratten J, Mordan N, McDonald A, Wilson M, et al. 2009. Susceptibility of MRSA biofilms to denture-cleansing agents. FEMS Microbiol. Lett. 291: 241-246. 

  7. Gerritsen CM, Margerum DW. 1990. Non-metal redox kinetics: hypochlorite and hypochlorous acid reactions with cyanide. Inorg. Chem. 29: 2757-2762. 

  8. Wang TX, Margerum DW. 1994. Kinetics of reversible chlorine hydrolysis: temperature dependence and general-acid/base-assisted mechanisms. Inorg. Chem. 33: 1050-1055. 

  9. Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, et al. 2007. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J. Burns Wounds. 6: e5. 

  10. Fukuzaki S. 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 11: 147-157. 

  11. Severing A-L, Rembe J-D, Koester V, Stuermer EK. 2018. Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro. J. Antimicrob. Chemother. 74: 365-372. 

  12. Dukan S, Belkin S, Touati D. 1999. Reactive oxygen species are partially involved in the bacteriocidal action of hypochlorous acid. Arch. Biochem. Biophys. 367: 311-316. 

  13. da Cruz Nizer WS, Inkovskiy V, Overhage J. 2020. Surviving reactive chlorine stress: responses of Gram-negative bacteria to hypochlorous acid. Microorganisms 8: 1220. 

  14. Castillo DM, Castillo Y, Delgadillo NA, Neuta Y, Jola J, Calderon JL, et al. 2015. Viability and effects on bacterial proteins by oral rinses with hypochlorous acid as active ingredient. Braz. Dent. J. 26: 519-524. 

  15. Spickett CM, Jerlich A, Panasenko OM, Arnhold J, Pitt AR, Stelmaszynska T, et al. 2000. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim. Pol. 47: 889-899. 

  16. Dever G, Wainwright CL, Kennedy S, Spickett CM. 2006. Fatty acid and phospholipid chlorohydrins cause cell stress and endothelial adhesion. Acta Biochim. Pol. 53: 761-768. 

  17. Kim NH, Park TH, Rhee MS. 2014. Enhanced bactericidal action of acidified sodium chlorite caused by the saturation of reactants. J. Appl. Microbiol. 116: 1447-1457. 

  18. Feldman C, Anderson R, Kanthakumar K, Vargas A, Cole PJ, Wilson R. 1994. Oxidant-mediated ciliary dysfunction in human respiratory epithelium. Free Radic. Biol. Med. 17: 1-10. 

  19. Kim HJ, Lee J-G, Kang JW, Cho H-J, Kim HS, Byeon HK, et al. 2008. Effects of a low Concentration hypochlorous acid nasal irrigation solution on bacteria, fungi, and virus. Laryngoscope 118: 1862-1867. 

  20. Moberg L, Karlberg B. 2000. An improved N,N'-diethyl-p-phenylenediamine (DPD) method for the determination of free chlorine based on multiple wavelength detection. Anal. Chim. Acta 407: 127-133. 

  21. Foerster S, Unemo M, Hathaway LJ, Low N, Althaus CL. 2016. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol. 16: 216. 

  22. Castro-Alferez M, Polo-Lopez MI, Fernandez-Ibanez P. 2016. Intracellular mechanisms of solar water disinfection. Sci. Rep. 6: 38145. 

  23. Dasgupta N, Ramalingam C. 2016. Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ. Chem. Lett. 14: 477-485. 

  24. Hong Y, Zeng J, Wang X, Drlica K, Zhao X. 2019. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl. Acad. Sci. USA 116: 10064-10071. 

  25. Rajneesh JP, Chatterjee A, Singh SP, Sinha RP. 2017. Detection of reactive oxygen species (ROS) in cyanobacteria using the oxidant-sensing Probe 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA). Bio Protoc. 7: e2545. 

  26. Gomes A, Fernandes E, Lima JL. 2005. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65: 45-80. 

  27. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA. 2014. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9: e111289. 

  28. Solana C, Ruiz-Linares M, Baca P, Valderrama MJ, Arias-Moliz MT, Ferrer-Luque CM. 2017. Antibiofilm activity of sodium hypochlorite and alkaline tetrasodium EDTA solutions. J. Endod. 43: 2093-2096. 

  29. Lara HH, Ayala-Nunez NV, Turrent LdCI, Padilla CR. 2010. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26: 615-621. 

  30. Bhattacharya R, Saha S, Kostina O, Muravnik L, Mitra A. 2020. Replacing critical point drying with a low-cost chemical drying provides comparable surface image quality of glandular trichomes from leaves of Millingtonia hortensis L. f. in scanning electron micrograph. Appl. Microsc. 50: 15. 

  31. Fischer ER, Hansen BT, Nair V, Hoyt FH, Dorward DW. 2012. Scanning electron microscopy. Curr. Protoc. Microbiol. 25: 2B.2.1-2B.2.47. 

  32. Al Shehadat S, Gorduysus MO, Hamid SSA, Abdullah NA, Samsudin AR, Ahmad A. 2018. Optimization of scanning electron microscope technique for amniotic membrane investigation: A preliminary study. Eur. J. Dent. 12: 574-578. 

  33. Romanova N, Brovko LY, Moore L, Pometun E, Savitsky A, Ugarova N, et al. 2003. Assessment of photodynamic destruction of Escherichia coli O157: H7 and Listeria monocytogenes by using ATP bioluminescence. Appl. Environ. Microbiol. 69: 6393-6398. 

  34. Sanchez MC, Llama-Palacios A, Marin MJ, Figuero E, Leon R, Blanc V, et al. 2013. Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med. Oral Patol. Oral Cir. Bucal. 18: e86. 

  35. Afri M, Frimer AA, Cohen Y. 2004. Active oxygen chemistry within the liposomal bilayer: Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem. Phys. Lipids 131: 123-133. 

  36. Daghastanli NA, Itri R, Baptista MS. 2008. Singlet oxygen reacts with 2',7'-dichlorodihydrofluorescein and contributes to the formation of 2,7'-dichlorofluorescein. Photochem. Photobiol. 84: 1238-1243. 

  37. Kim H, Xue X. 2020. Detection of total reactive oxygen species in adherent cells by 2',7'-Dichlorodihydrofluorescein diacetate staining. J. Vis. Exp. doi: 10.3791/60682. 

  38. Borisov VB, Siletsky SA, Nastasi MR, Forte E. 2021. ROS Defense systems and terminal oxidases in bacteria. Antioxidants 10: 839. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로