$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국형 영농형 태양광 스마트팜 시스템의 종합설계 및 구조해석을 통한 안전성 검토
Integral Design and Structural Analysis for Safety Assessment of Domestic Specialized Agrivoltaic Smart Farm System 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.64 no.4, 2022년, pp.21 - 30  

이상익 (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Seoul National University) ,  김동수 (Department of Rural Systems Engineering, Seoul National University) ,  김태진 (Department of Rural Systems Engineering, Seoul National University) ,  정영준 (Department of Rural Systems Engineering, Seoul National University) ,  이종혁 (Department of Rural Systems Engineering, Seoul National University) ,  손영환 (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Seoul National University) ,  최원 (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Global Smart Farm Convergence Major, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

Renewable energy systems aim to achieve carbon neutrality and replace fossil fuels. Photovoltaic technologies are the most widely used renewable energy. However, they require a large operating area, thereby decreasing available farmland. Accordingly, agrivoltaic systems (AVSs)-innovative smart farm ...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 따라서 본 연구에서는 한국형 영농형 태양광 스마트팜 기술의 확보와 시스템 구축을 위해 국내 작물 재배 및 영농조건을 반영한 종합설계를 수행하고, 이에 관한 시설물 안전을 확보하기 위한 구조해석 및 안전성 검토를 수행하며 구조설계에 관한 고려사항을 분석하였다.
  • 본 연구에서는 국내에 적합한 영농형 태양광 스마트팜 시스템의 구축을 위해 다양한 작물 재배조건과 영농형태를 반영한 시스템 설계를 수행하였다. 이를 위해 하부에 도달하는 일사량 및 발전용량에 영향을 주는 차광률과, 시설물의 규격을 결정하기 위한 작물의 재식거리 및 시스템 하부에서의 농작업을 고려하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Al Mamun, M. A., P. Dargusch, D. Wadley, N. A. Zulkarnain, and A. A. Aziz, 2022. A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews 161: 112351. https://doi.org/10.1016/j.rser.2022.112351. 

  2. Amaducci, S., X. Yin, and M. Colauzzi, 2018. Agrivoltaic systems to optimise land use for electric energy production. Applied Energy 220: 545-561. doi:10.1016/j.apenergy.2018.03.081. 

  3. Barron-Gafford, G. A., M. A. Pavao-Zuckerman, R. L. Minor, L. F. Sutter, I. Barnett-Moreno, D. T. Blackett, M. Thompson, K. Dimond, A. K. Gerlak, G. P. Nabhan, and J. E. Macknick, 2019. Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands. Nature Sustainability 2(9): 848-855. doi:10.1038/s41893-019-0364-5. 

  4. Chen, J., Y. Liu, and L. Wang, 2019. Research on coupling coordination development for photovoltaic agriculture system in China. Sustainability 11(4): 1065. doi:10.3390/su11041065. 

  5. Dias, L., J. P. Gouveia, P. Lourenco, and J. Seixas, 2019. Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy 81: 725-735. doi:10.1016/j.landusepol.2018.11.036. 

  6. Dupraz, C., H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, 2011. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy 36(10): 2725-2732. doi:10.1016/j.renene.2011.03.005. 

  7. Elamri, Y., B. Cheviron, J. M. Lopez, C. Dejean, and G. Belaud, 2018. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agricultural Water Management 208: 440-453. doi:10.1016/j.agwat.2018.07.001. 

  8. Gielen, D., F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, 2019. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24: 38-50. doi:10.1016/j.esr.2019.01.006. 

  9. Goetzberger, A. and A. Zastrow, 1982. On the coexistence of solar-energy conversion and plant cultivation. International Journal of Solar Energy 1(1): 55-69. doi:10.1080/01425918208909875. 

  10. Guerin, T. F., 2019. Impacts and opportunities from large-scale solar photovoltaic (PV) electricity generation on agricultural production. Environmental Quality Management 28(4): 7-14. doi:10.1002/tqem.21629. 

  11. Hernandez, R. R., A. Armstrong, J. Burney, G. Ryan, K. Moore-O'Leary, I. Diedhiou, S. M. Grodsky, L. Saul-Gershenz, R. Davis, J. Macknick, D. Mulvaney, G. A. Heath, S. B. Easter, M. K. Hoffacker, M. F. Allen, and D. M. Kammen, 2019. Techno-ecological synergies of solar energy for global sustainability. Nature Sustainability 2(7): 560-568. doi:10.1038/s41893-019-0309-z. 

  12. Janiak, T., 2017. Crops and solar farms - Solar sharing. https://tomaszjaniak.wordpress.com. Accessed 15 May. 2022. 

  13. Jeong, J. H., 2020. Current status and prospect of agrophotovoltaic system. Bulletin of the Korea Photovoltaic Society 6(2): 25-33. (in Korean). 

  14. Jurasz, J., F. A. Canales, A. Kies, M. Guezgouz, and A. Beluco, 2020. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy 195: 703-724. doi:10.1016/j.solener.2019.11.087. 

  15. Kang, M., S. Sohn, J. Park, J. Kim, S. W. Choi, and S. Cho, 2021. Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System. Korean Journal of Agricultural and Forest Meteorology 23(3): 141-148. doi:10.5532/KJAFM.2021.23.3.141. (in Korean). 

  16. Kim, G. H., 2020. Development of domestic agrophotovoltaic system and analysis of crop growth characteristics. Bulletin of the Korea Photovoltaic Society 6(2): 15-24. (in Korean). 

  17. Lee, S. I., J. Y. Choi, S. J. Sung, S. J. Lee, J. Lee, and W. Choi, 2020. Simulation and analysis of solar radiation change resulted from solar-sharing for agricultural solar photovoltaic system. Journal of the Korean Society of Agricultural Engineers 62(5): 63-72. doi:10.5389/KSAE.2020.62.5.063. (in Korean). 

  18. Lee, S. I., D. S. Kim, T. J. Kim, J. H. Jeon, J. H. Lee, Y. J. Jeong, B. H. Seo, Y. H. Son, and W. Choi, 2022. Basic design and safety assessment for domestic agrivoltaic system status and standard model development. Magazine of the Korean Society of Agricultural Engineers 64(1): 54-63 (in Korean). 

  19. Lee, S. I., J. J. Lee, J. Y. Choi, W. Choi, and S. J. Seong, 2019. Agricultural solar power generation for sharing solar energy, solar sharing. Magazine of the Korean Society of Agricultural Engineers 61(4): 2-11. (in Korean). 

  20. Lee, Y. J., S. K. Han, and S. Y. Kim, 2018. A study on the optimal angle setting considering the stability of photovoltaic systems. The Transactions of The Korean Institute of Electrical Engineers 67(4): 498-504. doi:10.5370/KIEE.2018.67.4.498. (in Korean). 

  21. Malu, P. R., U. S. Sharma, and J. M. Pearce, 2017. Agrivoltaic potential on grape farms in India. Sustainable Energy Technologies and Assessments 23: 104-110. doi:10.1016/j.seta.2017.08.004. 

  22. Marrou, H., L. Dufour, and J. Wery, 2013. How does a shelter of solar panels influence water flows in a soil-crop system?. European Journal of Agronomy 50: 38-51. doi:10.1016/j.eja.2013.05.004. 

  23. MOLIT (Ministry of Land, Infrastructure and Transport), 2019a. Building Structure Standard Design Load KDS 41 10 15. Korea Construction Standards Center: Goyang, Gyeonggi, Korea. (in Korean). 

  24. MOLIT (Ministry of Land, Infrastructure and Transport), 2019b. Steel Structure Design Code (Allowable Stress Design Method) KDS 14 30. Korea Construction Standards Center: Goyang, Gyeonggi, Korea. (in Korean). 

  25. MOTIE (Ministry of Trade, Industry and Energy), 2017. The 8th Basic Plan for Long-Term Electricity Supply and Demand. Ministry of Trade, Industry and Energy: Sejong, Korea. (in Korean). 

  26. Nagashima, A., 2015. Change Japan, Change the World! Advise of "Solar Sharing". Tokyo, Mass.: Rick. 

  27. Olabi, A. G., and M. A. Abdelkareem, 2022. Renewable energy and climate change. Renewable and Sustainable Energy Reviews 158: 112111. doi:10.1016/j.rser.2022.112111. 

  28. O'Shaughnessy, E., J. R. Cruce, and K. Xu, 2020. Too much of a good thing? Global trends in the curtailment of solar PV. Solar Energy 208: 1068-1077. doi:10.1016/j.solener.2020.08.075. 

  29. Sekiyama, T. and A. Nagashima, 2019. Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments 6(6): 65. doi:10.3390/environments6060065. 

  30. Trommsdorff, M., J. Kang, C. Reise, S. Schindele, G. Bopp, A. Ehmann, A. Weselek, P. Hogy, and T. Obergfell, 2021. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renewable and Sustainable Energy Reviews 140: 110694. doi:10.1016/j.rser.2020.110694. 

  31. Weselek, A., A. Ehmann, S. Zikeli, I. Lewandowski, S. Schindele, and P. Hogy, 2019. Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development 39(4): 1-20. doi:10.1007/s13593-019-0581-3. 

  32. Zainol Abidin, M. A., M. N. Mahyuddin, and M. A. A. Mohd Zainuri, 2021. Solar photovoltaic architecture and agronomic management in agrivoltaic system: A review. Sustainability 13(14): 7846. doi:10.3390/su13147846. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로