$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향
Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries 원문보기

공업화학 = Applied chemistry for engineering, v.33 no.4, 2022년, pp.343 - 351  

하성민 (충남대학교 응용화학공학과) ,  김대섭 (충남대학교 응용화학공학과) ,  곽철환 (충남대학교 탄소융복합기술연구소) ,  이영석 (충남대학교 응용화학공학과)

초록
AI-Helper 아이콘AI-Helper

리튬이온 전지(lithium-ion batteries, LIBs)는 높은 에너지 밀도, 느린 자가방전율, 고율 충전 능력 및 긴 배터리 수명 등의 좋은 성능으로 촉망받는 에너지 저장 장치로 꼽힌다. 그러나 고에너지 밀도의 전기자동차 및 대형 디바이스 산업에서 이러한 LIBs의 적용은 큰 안전 문제를 일으키고 있다. 이러한 문제를 해결하기 위하여 열적 안정성 및 내재적 안전성이 높은 재료를 개발하는 것이 LIBs의 안정성 및 전기화학적 성능을 향상시키는 궁극적인 해결방법이다. 본 총설에서는 상용 분리막의 안정성 문제 극복을 위한 분리막의 표면 개질 기술을 소개하였으며 이를 이용하여 개질된 리튬이온 전지용 분리막을 활용한 연구 동향을 요약, 정리하였다. 또한 이를 기반으로 표면 개질에 따른 분리막에 대한 향후 전망을 논의하였다.

Abstract AI-Helper 아이콘AI-Helper

Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large dev...

주제어

표/그림 (9)

참고문헌 (46)

  1. Q. Cheng, W. He, X. Zhang, M. Li, and X. Song, Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries, RSC Adv., 6, 10250-10265 (2016). 

  2. M. F. Lagadec, R. Zahn, and V. Wood, Characterization and performance evaluation of lithium-ion battery separators, Nat. Energy, 4, 16-25 (2018). 

  3. X. Yin, Y. Zhang, J.-J. Yuan, B.-K. Zhu, L.-P. Zhu, Y.-Z. Song, and C.-C. Sun, Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-Ion batteries and the role of the interfaces between separator and electrolyte, Electrochim. Acta, 275, 25-31 (2018). 

  4. M. Waqas, S. Ali, W. Lv, D. Chen, B. Boateng, and W. He, High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries, Adv. Mater. Interfaces, 6, 1801330 (2019). 

  5. J. Zhang, L. Yue, Q. Kong, Z. Liu, X. Zhou, C. Zhang, Q. Xu, B. Zhang, G. Ding, B. Qin, Y. Duan, Q. Wang, J. Yao, G. Cui, and L. Chen, Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery, Sci. Rep., 4, 1-8 (2014). 

  6. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014). 

  7. J. Hao, G. Lei, Z. Li, L. Wu, Q. Xiao, and L. Wang, A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery, J. Membr. Sci., 428, 11-16 (2013). 

  8. C. J. Orendorff, T. N. Lambert, C. A. Chavez, M. Bencomo, and K. R. Fenton, Polyester separators for lithium-ion cells: Improving thermal stability and abuse tolerance, Adv. Energy Mater., 3, 314-320 (2013). 

  9. X. Zhu, X. Jiang, X. Ai, H. Yang, and Y. Cao, A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries, ACS Appl. Mater. Interfaces, 7, 24119-24126 (2015). 

  10. J. Shi, Y. Xia, Z. Yuan, H. Hu, X. Li, H. Zhang, and Z. Liu, Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval), Sci. Rep., 5, 1-11 (2015). 

  11. R. Luo, C. Wang, Z. Zhang, W. Lv, Z. Wei, Y. Zhang, X. Luo, and W. He, Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate lithium ion batteries, ACS Appl. Energy Mater., 1, 921-927 (2018). 

  12. H. Wang and H. Gao, A sandwich-like composite nonwoven separator for Li-ion batteries, Electrochim. Acta, 215, 525-534 (2016). 

  13. R. S. Baldwin, M. Guzik, and M. Shierski, Properties and performance attributes of novel Co-extruded polyolefin battery separator materials part 1: Mechanical properties, NASA Center for AeroSpace Information, 216979, 1-14 (2009). 

  14. C. F. Francis, I. L. Kyratzis, and A. S. Best, Lithium-ion battery separators for ionic-liquid electrolytes: A review, Adv. Mater., 32, 1904205 (2020). 

  15. M. Waqas, C. Tan, W. Lv, S. Ali, B. Boaten, W. Chen, Z. Wei, J. Chao Feng, J. Ahmed, J. B. Goodenough, and W. He, A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries, ChemElectroChem, 5, 2722-2728 (2018). 

  16. M. Alireza, Z. Seyedeh, S. Mohammad, and M. Sharifzadeh, Mechanical engineering of solid oxide fuel cell systems: Geometric design, mechanical configuration, and thermal analysis. In: M. Sharifzadeh (ed.). Design and Operation of Solid Oxide Fuel Cells in Design and Operation of Solid Oxide Fuel Cells, 85-130, Academic Press, Cambridge, USA (2020). 

  17. H. Liu, J. Xu, B. Guo, and X. He, Effect of Al 2 O 3 /SiO 2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries, Ceram. Int., 40, 14105-14110 (2014). 

  18. Z. Zhang, W. Yuan, and L. Li, Enhanced wettability and thermal stability of nano-SiO 2 /poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries, Particuology, 37, 91-98 (2018). 

  19. L. F. Feng, J. L. Shi, J. H. Jiang, H. Li, B. K. Zhu, and L. P. Zhu, Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries, RSC Adv., 4, 22501-22508 (2014). 

  20. W. Chen, L. Shi, H. Zhou, J. Zhu, Z. Wag, X. Mao, M. Chi, L. Sun, and S. Yuan, Water-based organic-inorganic hybrid coating for a high-performance separator, ACS Sustain. Chem. Eng., 4, 3794-3802 (2016). 

  21. X. Zuo, J. Wu, X. Ma, X. Deng, J. Cai, Q. Chen, J. Liu, and J. Nan, A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO 2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance, J. Power Sources., 407, 44-52 (2018). 

  22. S. Hu, S. Lin, Y. Tu, J. Hu, Y. Wu, G. Liu, F. Li, F. Yu, and T. Jiang, Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries, J. Mater. Chem. A, 4, 3513-3526 (2016). 

  23. M. Liu, P. Zhang, L. Gou, Z. Hou, and B. Huang, Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification, Mater. Lett., 208, 98-101 (2017). 

  24. A. Gupta and S. Sivaram, Separator membranes for lithium-sulfur batteries: design principles, structure, and performance, Energy Technol., 7, 1800819 (2019). 

  25. G. Feng, Z. Li, L. Mi, J. Zheng, X. Feng, and W. Chen, Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries, J. Power Sources., 376, 177-183 (2018). 

  26. E. Shekarian, M. R. J. Nasr, T. Mohammadi, O. Bakhtiari, and M. Javanbakht, Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery, J. Nanostruct., 9, 736-750 (2019). 

  27. Y. Xiang, W, Zhu, W. Qiu, W. Guo, J. Lei, D. Liu, D. Qu, Z. Xie, H. Tang, and J. Li, SnO 2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery, Chem. Eur. J., 3, 911-916 (2018). 

  28. X. Niu, J. Li, G. Song, Y. Li and T. He, Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery, Energy Mater., 57, 7042-7055 (2022). 

  29. Y. Xiao, A. Fu, Y. Zou, L. Huang, H. Wang, Y. Su, and J. Zheng, High safety lithium-ion battery enabled by a thermal-induced shutdown separator, Chem. Eng. J., 438, 135550 (2022). 

  30. H. Lee, H. Jeon, S. H. Gong, M. H. Ryou, and Y. M. Lee, A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators, Appl. Surf. Sci., 427, 139-146 (2018). 

  31. R. S. Juang, C. H. Liang, W. C. Ma, C. Y. Tsai, and C. Huang, Low-pressure ethane/nitrogen gas mixture plasma surface modification effect on the wetting and electrochemical performance of polymeric separator for lithium-ion batteries, J. Taiwan Inst. Chem. Eng., 45, 3046-3051 (2014). 

  32. R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021). 

  33. E. J. Song, M.-J. Kim, J.-I. Han, Y. J. Choi, and Y.-S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019) 

  34. S. Y. Jin, J. Manuel, X. Zhao, W. H. Park, and J. H. Ahn, Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery, J. Ind. Eng. Chem., 45, 15-21 (2017). 

  35. X. Li, J. He, D. Wu, M. Zhang, J. Meng, and P. Ni, Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators, Electrochim. Acta, 167, 396-403 (2015). 

  36. J. Fang, A. Kelarakis, Y. W. Lin, C. Y. Kang, M. H. Yang, C. L. Cheng, Y. Wang, E. P. Giannelis, and L. D. Tsai, Nanoparticlecoated separators for lithium-ion batteries with advanced electrochemical performance, Phys. Chem. Chem. Phys., 13, 14457-14461 (2011). 

  37. H. Jeon, S. Y. Jin, W. H. Park, H. Lee, H. T. Kim, M. H. Ryou, and Y. Lee, Plasma-assisted water-based Al 2 O 3 ceramic coating for polyethylene-based microporous separators for lithium metal secondary batteries, Electrochim. Acta, 212, 649-656 (2016) 

  38. N. Sabetzadeh, C. Falamaki, R. Riahifar, M. S. Yaghmaee, and B. Raissi, Plasma treatment of polypropylene membranes coated with zeolite/organic binder layers: Assessment of separator performance in lithium-ion batteries, Solid State Ion., 363, 115589 (2021). 

  39. C. Li, H.-L. Li, C.-H. Li, Y.-S. Liu, Y.-C. Sung, and C. Huang, Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries, Jpn. J. Appl. Phys., 57, 01AB03-1 (2018). 

  40. H. S. Jeong and S. Y. Lee, Closely packed SiO 2 nanoparticles/ poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries, J. Power Sources, 196, 6716-6722 (2011). 

  41. H. Liu, J. Xu, B. Guo, and X. He, Effect of SiO 2 Content on performance of polypropylene separator for lithium-ion batteries, J. Appl. Polym. Sci., 131, 41156 (2014). 

  42. W. K. Shin and D. W. Kim, High performance ceramic-coated separators prepared with lithium ion-containing SiO 2 particles for lithium-ion batteries, J. Power Sources, 226, 54-60 (2013). 

  43. C. Shi, P. Zhang, L. Chen, P. Yang, and J. Zhao, Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries, J. Power Sources, 270, 547-553 (2014). 

  44. Z. Wang, H. Zhu, L. Yang, X. Wang, Z. Liu, and Q. Chen, Plasma modified polypropylene membranes as the lithium-ion battery separators, Plasma Sci. Technol., 18, 424-429 (2016). 

  45. M. Han, D. W. Kim, and Y. C. Kim, Charged polymer-coated separators by atmospheric plasma-induced grafting for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 26073-26081 (2016). 

  46. Z. Wang, F. Guo, C. Chen, L. Shi, S. Yuan, L. Sun, and J. Zhu, Self-assembly of Pei/SiO 2 on polyethylene separators for li-ion batteries with enhanced rate capability, ACS Appl. Mater. Interfaces, 7, 3314-3322 (2015). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로