최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기韓國軍事科學技術學會誌 = Journal of the KIMST, v.25 no.4, 2022년, pp.381 - 389
조선영 (국방과학연구소 국방인공지능기술센터)
Detecting partially occluded objects is difficult due to the appearances and shapes of occluders are highly variable. These variabilities lead to challenges of localizing accurate bounding box or classifying objects with visible object parts. To address these problems, we propose a two-stage part-ba...
H. Zhu, P. Tang, J. Park, S. Park, A. Yuille, "Robustness of Object Recognition Under Extreme Occlusion in Humans and Computational Models," CoRR, Vol. abs/1905.04598, 2019.
A. Fawzi, P. Frossard, "Measuring the Effect of Nuisance Variables on Classifiers," BMVC, 2016.
T. DeVries, G. W. Taylor, "Improved Regularization of Convolutional Neural Networks with Cutout," arXiv preprint arXiv:1708.04552, 2017.
S. Yun, D. Han, S. J. Oh, S. Chun, Y. Yoo, "Cutmix: Regularization Strategy to Train Strong Classifiers with Localizable Features," ICCV, pp. 6023-6032, 2019.
C. Zhou, J. Yuan, "Multi-Label Learning of Part Detectors for Heavily Occluded Pedestrian Detection," ICCV, pp. 3486-3495, 2017.
C. Zhou, J. Yuan, "Non-Rectangular Part Discovery for Object Detection," BMCV, 2014.
Y. Tian, P. Luo, X. Wang, X. Tang, "Deep Learning Strong Parts for Pedestrian Detection," ICCV, pp. 1904-1912, 2015.
C. Zhou, J. Yuan, "Occlusion Pattern Discovery for Object Detection and Occlusion Reasoning," TCSVT, Vol. 30, No. 7, pp. 2067-2080, 2020.
C. Zhou, J. Yuan, "Bi-Box Regression for Pedestrian Detection and Occlusion Estimation," ECCV, pp. 135-151, 2018.
S. Yan, Q. Liu, "Inferring Occluded Features for Fast Object Detection," Signal Processing, Vol. 110, pp. 188-198, 2015.
X. Wang, T. X. Han, S. Yan, "An HOG-LBP Human Detector with Partial Occlusion Handling," ICCV, pp. 32-39, 2009.
S. Zhang, L. Wen, X. Bian, Z. Lei, S. Z. Li, "Occlusion-Aware R-CNN: Detecting Pedestrians in a Crowd," ECCV, pp. 657-674, 2018.
J. Wang, L. Xie, A.L. Yuille, Z. Zhang, C. Xie, "Deepvoting: A Robust and Explainable Deep Network for Semantic Part Detection Under Partial Occlusion," CVPR, pp. 1372-1380, 2018.
C. Chi, S. Zhang, J. Xing, Z. Lei, S. Z. Li, X. Zou, "PedHunter: Occlusion Robust Pedestrian Detector in Crowded Scenes," AAAI, pp. 10639-10646, 2020.
V. Mnih, N. Heess, A. Graves, K. Kavukcuoglu, "Recurrent Models of Visual Attention," NIPS, pp. 2204-2212, 2014.
Y. Pang, J. Xie, M. H. Khan, R. M. Anwer, F. S. Khan, L. Shao, "Mask-Guided Attention Network for Occluded Pedestrian Detection," ICCV, pp. 4967-4975, 2018.
S. Ren, K. He, R. Girshick, J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," NIPS, pp. 91-99, 2015.
K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition," CVPR, pp. 770-778, 2016.
P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, D. Ramanan, "Object Detection with Discriminatively Trained Part-based Models," TPAMI, Vol. 32, No. 9, pp. 1627-1645, 2010.
R. Girshick, "Fast R-CNN," ICCV, pp. 1440-1448, 2015.
M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, A. Vedaldi, "Describing Textures in the Wild," CVPR, pp. 3606-3613, 2016.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.