$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

베타글루칸과 구연산의 교차결합 바이오 폴리머 흡착제를 이용한 수용액내 납과 구리의 흡착
Adsorption of Pb and Cu from Aqueous Solution by β-Glucan Crosslinked with Citric Acid 원문보기

자원환경지질 = Economic and environmental geology, v.55 no.4, 2022년, pp.367 - 376  

전한결 (광주과학기술원 지구환경공학부) ,  김경웅 (광주과학기술원 지구환경공학부)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 바이오폴리머의 일종인 베타글루칸구연산과 교차결합하여 수용액 내에서 불용성인 흡착제(crosslinked β-glucan, CBG)롤 제조하였으며, FTIR과 SEM-EDX를 이용하여 CBG의 특성평가와 납과 구리 흡착특성을 파악하기 위한 pH에 따른 흡착량 변화, 흡착속도, 등온흡착 실험을 진행하였다. 특성평가 결과, 베타글루칸과 구연산의 교차결합 메커니즘을 파악하였으며, CBG 표면에서의 납과 구리 흡착을 확인하였다. 수용액 pH에 의한 흡착량 변화 실험에서는 pH 6에서 가장 높은 납과 구리 흡착량을 보였으며, pH 3이하에서는 급격한 감소를 보였다. 또한 흡착속도 실험 결과 CBG에 의한 납과 구리 흡착은 유사 2차 반응속도식과 내부확산식을 따르는 것을 확인하였고, 등온흡착 실험에서는 Langmuir식을 따라 납과 구리 최대흡착량이 각각 59.70, 23.44 mg/g임을 확인하였다. 본 연구에서는 구연산을 이용하여 베타글루칸을 수용액 내 흡착제로 이용하는 방법을 제시하고자 하였으며, 연구결과에 따라 CBG는향후 친환경적인 중금속 흡착제로서의 적용이 가능할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

One of biopolymer, β-glucan (BG) chains were crosslinked by citric acid under the heating condition for the adsorption of Pb and Cu ions in the aqueous solution. The variation of functional groups on BG itself and crosslinked β-glucan (CBG) with their surface adsorption characteristics...

주제어

참고문헌 (43)

  1. Ahmad, S.Z.N., Salleh, W.N.W., Yusof, N., Mohd Yusop, M.Z., Hamdan, R., Awang, N.A., ... and Ismail, A.F. (2021) Pb (II) removal and its adsorption from aqueous solution using zinc oxide/graphene oxide composite. Chem. Eng. Commun., v.208(5), p.646-660. doi: 10.1080/00986445.2020.1715957. 

  2. Bartczak, P., Norman, M., Klapiszewski, L., Karwanska, N., Kawalec, M., Baczynska, M., ... and Jesionowski, T. (2018) Removal of nickel (II) and lead (II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arab. J. Chem., v.11(8), p.1209-1222. doi: 10.1016/j.arabjc.2015.07.018 

  3. Basri, S.N., Zainuddin, N., Hashim, K. and Yusof, N.A. (2016) Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution. Carbohydr. Polym., v.138, p.34-40. doi: 10.1016/j.carbpol.2015.11.028. 

  4. Briffa, J., Sinagra, E. and Blundell, R. (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, v.6(9), e04691. doi: 10.1016/j.heliyon.2020.e04691. 

  5. Bueno, V.B., Bentini, R., Catalani, L.H. and Petri, D.F.S. (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym., v.92(2), p.1091-1099. doi: 10.1016/j.carbpol.2012.10.062. 

  6. Chang, I., Im, J. and Cho, G.C. (2016) Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustain., v.8(3), p.251. doi: 10.3390/su8030251. 

  7. Chen, J.P., Wu, S. and Chong, K.H. (2003) Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon, v.41(10), p.1979-1986. doi: 10.1016/S0008-6223(03)00197-0. 

  8. de Luna, M.D.G., Flores, E.D., Cenia, M.C.B. and Lu, M.C. (2015) Removal of copper ions from aqueous solution by adlai shell (Coix lacryma-jobi L.) adsorbents. Bioresour. Technol., v.192, p.841-844. doi: 10.1016/j.biortech.2015.06.018. 

  9. Dong, A., Xie, J., Wang, W., Yu, L., Liu, Q. and Yin, Y. (2010) A novel method for amino starch preparation and its adsorption for Cu (II) and Cr (VI). J. Hazard. Mater., v.181(1-3), p.448-454. doi: 10.1016/j.biortech.2015.06.018. 

  10. Elella, M.H.A., Sabaa, M.W., Abd ElHafeez, E. and Mohamed, R.R. (2019) Crystal violet dye removal using crosslinked grafted xanthan gum. Int. J. Biol. Macromol., v.137, p.1086-1101. doi: 10.1016/j.ijbiomac.2019.06.243. 

  11. Freundlich, H.M.F. (1906) Over the adsorption in solution. J. Phys. Chem., v.57, p.1100-1107. 

  12. Hall, K.R., Eagleton, L.C., Acrivos, A. and Vermeulen, T. (1966) Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Res., v.5(2), p.212-223. doi: 10.1021/i160018a011 

  13. Hashem, A., Abdel-Halim, E.S., El-Tahlawy, K.F. and Hebeish, A. (2005) Enhancement of the adsorption of Co (II) and Ni (II) ions onto peanut hulls through esterification using citric acid. Adsorpt. Sci. Technol., v.23(5), p.367-380, doi: 10.1260/026361705774355478. 

  14. He, J., Li, Y., Wang, C., Zhang, K., Lin, D., Kong, L. & Liu, J. (2017) Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl. Surf. Sci., v.426, p.29-39. doi: 10.1016/j.apsusc.2017.07.103. 

  15. Hu, J., Wu, Y., Xie, H., Shi, W., Chen, Z., Jiang, D., ... and Liu, Y. (2020) Purification, preliminary structural characterization, and in vitro inhibitory effect on digestive enzymes by β-glucan from qingke (Tibetan Hulless Barley). Adv. Polym. Technol., v.2020, 2709536. doi: org/10.1016/j.apsusc.2017.07.103. 

  16. Huang, G., Zhang, H., Shi, J.X. and Langrish, T.A. (2009) Adsorption of chromium (VI) from aqueous solutions using cross-linked magnetic chitosan beads. Ind. Eng. Chem. Res., v.48(5), p.2646-2651. doi: 10.1021/ie800814h. 

  17. Jeon, H.G., Cheong, K.H., Lee, J.W., Lee, J.S. and Moon, D.H. (2020) Adsorption of Heavy Metals in an Aqueous Solution Using. J. Korean Soc. Environ. Eng., v.42(5), p.267-279. doi: 10.4491/KSEE.2020.42.5.267. 

  18. Ko, M.S., Jeon, Y.J. and Kim, K.W. (2022) Novel application of xanthan gum-based biopolymer for heavy metal immobilization in soil. J. Environ. Chem. Eng., v.10(5), 108240. doi: 10.1016/j.jece.2022.108240. 

  19. Kolodynska, D., Geca, M., Skwarek, E. and Goncharuk, O. (2018) Titania-coated silica alone and modified by sodium alginate as sorbents for heavy metal ions. Nanoscale Res. Lett., v.13(1), p.1-12. doi: 10.1186/s11671-018-2512-7. 

  20. Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, v.40(9), p.1361-1403. doi: 10.1021/ja02242a004 

  21. Limberger-Bayer, V.M., de Francisco, A., Chan, A., Oro, T., Ogliari, P.J. and Barreto, P.L. (2014) Barley β-glucans extraction and partial characterization. Food Chem., v.154, p.84-89. doi: 10.1016/j.foodchem.2013.12.104. 

  22. Liu, Q., Li, F., Lu, H., Li, M., Liu, J., Zhang, S., ... and Xiong, L. (2018) Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chem., v.242, p.256-263. doi: 10.1016/j.foodchem.2017.09.071. 

  23. Luo, F.X., Huang, Q., Fu, X., Zhang, L.X. and Yu, S.J. (2009) Preparation and characterisation of crosslinked waxy potato starch. Food Chem., v.115(2), p.563-568. doi: 10.1016/j.foodchem.2008.12.052. 

  24. Ma, X., Liu, X., Anderson, D.P. and Chang, P.R. (2015) Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chem., v.181, p.133-139. doi: 10.1016/j.foodchem.2015.02.089. 

  25. Pal, A., Majumder, K., Sengupta, S., Das, T. and Bandyopadhyay, A. (2017) Adsorption of soluble Pb (II) by a photocrosslinked polysaccharide hybrid: A swelling-adsorption correlation study. Carbohydr. Polym., v.177, p.144-155. doi: 10.1016/j.carbpol.2017.08.122. 

  26. Salehi, E., Madaeni, S.S., Rajabi, L., Vatanpour, V., Derakhshan, A.A., Zinadini, S., ... and Monfared, H.A. (2012) Novel chitosan/poly (vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu (II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep. Purif. Technol., v.89, p.309-319. doi: 10.1016/j.seppur.2012.02.002. 

  27. Srikaeo, K., Hao, P.T. and Lerdluksamee, C. (2019) Effects of heating temperatures and acid concentrations on physicochemical properties and starch digestibility of citric acid esterified tapioca starches. Starke., v.71(1-2), 1800065. doi: 10.1002/star.201800065. 

  28. Tanan, W. and Saengsuwan, S. (2020) A one-pot microwave-assisted synthesis of IPN hydrogels based on HEMA/AM/PVA blend for enhancing Cu (II) and Pb (II) ions removal. J. Environ. Chem. Eng., v.8(2), 103469. doi: 10.1016/j.jece.2019.103469. 

  29. Tran, H.N., You, S.J. and Chao, H.P. (2016) Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manag. Res., v.34(2), p.129-138. doi: 10.1177/0734242X15615698. 

  30. Walker, C.H., Sibly, R.M. and Peakall, D.B. (2005) Principles of ecotoxicology. CRC press. 

  31. Wang, J. and Guo, X. (2020) Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater., v.390, 122156. doi: 10.1016/j.jhazmat.2020.122156. 

  32. Wang, Q., Wang, Y., Tang, J., Yang, Z., Zhang, L. and Huang, X. (2022) New insights into the interactions between Pb (II) and fruit waste biosorbent. Chemosphere, v.303, 135048. doi: 10.1016/j.chemosphere.2022.135048. 

  33. Wang, Y., Ahmed, Z., Feng, W., Li, C. and Song, S. (2008) Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int. J. Biol. Macromol., v.43(3), p.283-288. doi: 10.1016/j.ijbiomac.2008.06.011. 

  34. Weber Jr, W.J. and Morris, J.C. (1963) Kinetics of adsorption on carbon from solution. J. San. Eng. Div., v.89(2), p.31-59. doi: 10.1061/JSEDAI.0000430 

  35. Wu, J., Wang, J., Li, H., Du, Y., Huang, K. and Liu, B. (2013) Designed synthesis of hematite-based nanosorbents for dye removal. J. Mater. Chem., v.1(34), p.9837-9847. doi: 10.1039/C3TA11520H. 

  36. Xie, X. and Liu, Q. (2004) Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starke., v.56(8), p.364-370, doi: 10.1002/star.200300261. 

  37. Xu, X., Ouyang, X.K. and Yang, L.Y. (2021) Adsorption of Pb (II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J. Mol. Liq., v.322, 114523. doi: 10.1016/j.molliq.2020.114523. 

  38. Yan, Y., Yuvaraja, G., Liu, C., Kong, L., Guo, K., Reddy, G.M. and Zyryanov, G.V. (2018) Removal of Pb (II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff's base@ Fe3O4 (ECCSB@ Fe3O4). Int. J. Biol. Macromol., v.117, p.1305-1313. doi: 10.1016/j.ijbiomac.2018.05.204. 

  39. Yang, C.Q., Wang, X. and Kang, I.S. (1997) Ester crosslinking of cotton fabric by polymeric carboxylic acids and citric acid. Text. Res. J., v.67(5), p.334-342. doi: 10.1177/004051759706700505. 

  40. Yang, J., Wei, W., Pi, S., Ma, F., Li, A., Wu, D. and Xing, J. (2015) Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1. Bioresour. Technol., v.196, p.533-539. doi: 10.1016/j.biortech.2015.08.011. 

  41. Yari, M., Rajabi, M., Moradi, O., Yari, A., Asif, M., Agarwal, S. and Gupta, V.K. (2015) Kinetics of the adsorption of Pb (II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. J. Mol. Liq., v.209, p.50-57. doi: 10.1016/j.molliq.2015.05.022. 

  42. Zhao, F., Repo, E., Yin, D. and Sillanpaa, M.E. (2013) Adsorption of Cd (II) and Pb (II) by a novel EGTA-modified chitosan material: Kinetics and isotherms. J. Colloid Interface Sci., v.409, p.174-182. doi: 10.1016/j.jcis.2013.07.062. 

  43. Zhao, Y., Zhan, L., Xue, Z., Yusef, K.K., Hu, H. and Wu, M. (2020) Adsorption of Cu (II) and Cd (II) from wastewater by sodium alginate modified materials. J. Chem., v.2020, 5496712. doi: 10.1155/2020/5496712. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로