$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물공장에서 생산된 새싹인삼의 생육 시기에 따른 영양성분 및 항산화 활성 변화
Changes of nutritional constituents and antioxidant activities by the growth periods of produced ginseng sprouts in plant factory 원문보기

Journal of applied biological chemistry, v.65 no.3, 2022년, pp.129 - 142  

성진아 (Department of Food Science, Gyeongsang National University) ,  이희율 (Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ,  김수철 (Department of Food Science, Gyeongsang National University) ,  조두용 (Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ,  정재각 (Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ,  김민주 (Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ,  이애련 (Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ,  정종빈 (Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ,  손기호 (Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ,  조계만 (Department of Food Science, Gyeongsang National University)

초록
AI-Helper 아이콘AI-Helper

새싹인삼은 잎부터 뿌리까지 섭취가 가능하며 스마트 팜 또는 식물공장에서 재배 시 계절에 영향을 받지 않으며 농약을 사용하지 않아도 되는 이점이 있다. 본 연구에서는 새싹인삼의 최적 재배 시기를 확인하고 영양성분과 항산화 활성을 비교 분석하였다. 생육 시기에 따른 지방산과 무기질 함량은 큰 차이를 보이지 않았다. 총 아미노산 함량은 45일까지 약간 감소하였고 이후에는 증가하였으며 생육 65일 arginine 함량은 3309.11 mg/100 g으로 가장 높게 확인되었다. 총 ginsenoside 함량은 생육기간 동안 큰 변화가 없었다(25일 29.83 mg/g→45일 32.77 mg/g→65일 26.02 mg/g). Ginsenoside Rg2 (0.62 mg/g), Re (8.69 mg/g), Rb1 (4.75 mg/g) 및 Rd (3.47 mg/g)의 함량은 생육기간 중 45일에 가장 높았다. Phenolic acids와 flavonols 함량은 생육 45일 (338.6 및 1277.14 ㎍/g)까지 증가 후 65일까지 감소하였다. Phenolic acids와 flavonols의 주요 화합물은 각각 benzoic acid (99.03-142.33 ㎍/g)와 epigallocatechin (416.03-554.64 ㎍/g)로 확인되었다. DPPH (44.27%), ABTS (75.16%)와 hydroxyl (63.29%) 라디칼 소거활성 및 FRAP 환원력(1.573 OD573nm) 또한 총 phenolics 및 총 flavonolids 함량과 마찬가지로 생육 45일에 가장 높은 활성을 보였다.

Abstract AI-Helper 아이콘AI-Helper

Ginseng sprouts, which can be eaten from leaves to roots, has the advantage of not having to use pesticides without being affected by the season by using smart farms. The optimal cultivation timing of sprout ginseng was checked and the nutritional content and antioxidant activity were compared and a...

주제어

참고문헌 (50)

  1. Mo HS, Park HW, Jang IB, Yu J, Park KC, Hyun DY, Lee EH, Kim KH (2014) Effect of sowing density and number of seeds sown on Panax ginseng C. A. Meyer seedling stands under direct sowing cultivation in blue plastic greenhouse. Korean J Med Crop Sci 22: 469-474. doi:10.7783/KJMCS.2014.22.6.469 

  2. Kang SW, Lee SW, Hyun DY, Yeon BY, Kim YC, Kim YC (2010) Studies on selection of adaptable varieties in paddy-field of ginseng culture. Korean J Med Crop Sci 18: 416-420 

  3. Song BH, Chang YG, Lee KA, Lee SW, Kang SW, Cha SW (2011) Studies on analysis of growth characteristics, ability of dry matter production, and yield of Panax ginseng C. A. Meyer ay different growth stages with different cultivars and shading nets in paddy field. Korean J Med Crop Sci 19: 90-96. doi: 10.7783/KJMCS.2011.19.2.090 

  4. Kim GS, Lee MJ, Hyun DY, Park CG, Park HK, Cha SW, Lee SW (2007) Effect of blue and yellow polyethylene shading net on growth characteristics and ginsenoside contents in Panax ginseng C. A. Meyer. Korean J Med Crop Sci 15: 194-198 

  5. Mok SK, Cheon SK, Lee SS, Lee TS (1994) Effect of shading net colors on the growth and saponin content of Korean ginseng (Panax ginseng C. A. Meyer). J Ginseng Res 18: 182-186 

  6. Yahara S, Kaji K, Tanaka O (1979) Further study on dammarane-type saponins of roots, leaves, flower-buds, and fruits of Panax ginseng C. A. Meyer. Chem and Phar Bull 27: 88-92. doi: 10.1248/cpb.27.88 

  7. Choi JE, Li X, Jan YH, Lee KT (2009) Changes of saponin contents of leaves, stems and flower-buds of Panax ginseng C. A. Meyer by harvesting days. Korean J Med Crop Sci 17: 251-256 

  8. Shin SL, Chang YD, Jeon AR, Lee CH (2009) Effect of different greening periods on antioxidant activities of sprout vegetables of Coreopsis tinctorial Nutt. and Saussurea pulchella (Fisch.) Fisch. Korean J Hort Sci Technol 27: 503-510 

  9. Khalil AW, Zeb A, Mahmood F, Tariq S, Khattak AB, Shah H (2007) Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT-Food Sci Technol 40: 937-945. doi: 10.1016/j.lwt.2006.05.009 

  10. Shi W, Wang Y, Li J, Zhang H, Ding L (2007) Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 21: 587-592 

  11. Jang IB, Yu J, Suh SJ, Jang IB, Kwon KB (2018) Growth and ginsenoside content in different parts of ginseng sprouts depending on harvest time. Korean J Med Crop Sci 26: 205-213. doi: 10.7783/ KJMCS.2018.26.3.205 

  12. Noh HS, Lee YS (2020) Determinants of growth variables on smart farm tomato production. The society of convergence knowledge transactions 8: 17-25 

  13. Yeo UH, Lee IB, Kwon KS, Ha TW, Park SJ, Kim RW, Lee SY (2016) Analysis of research trend and core technologiesbased on ICT to materialize smart-farm. Prot Horti Pal Fac 25: 30-41. doi: 10.12791/KSBEC.2016.25.1.30 

  14. Hwang SH, Kim SC, Seong JA, Lee HY, Cho DY, Kim MJ, Jung JG, Jung EH, Son KH, Cho KM (2021) Comparison of ginsenoside contents and antioxidant according to the size of ginseng sprout has produced in a plant factory. J Appl Biol Chem 64: 253-261. doi: 10.3839/jabc.2021.035 

  15. Cho KM, Hwang CE, Joo OS (2017) Change of physicochemical properties, phytochemical contents and biological activities during the vinegar fermentation of Elaeagnus multiflora fruit. J Food Preserv 24: 125-133. doi: 10.11002/kjfp.2017.24.1.125 

  16. Kim SC, Kang YM, Seong JA, Lee HY, Cho DY, Joo OS, Lee JH, Cho KM (2021) Comprehensive changes of nutritional constituents and antioxidant activities of ginseng sprouts according to the roasting process. Korean J Food Preserv 28: 72-87. doi: 10.11002/kjfp.2021.28.1.72 

  17. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243 

  18. Cho KM, Hwang CE, Kim SC, Joo OS (2018) Physicochemical properties, phytochemicals, and biological activities of heat-treated Elaegnus multiflora juice and vinegar. Korean J Food Preserv 25: 52-61. doi: 10.11002/kjfp.2018.25.1.52 

  19. Jin Y, Kim YJ, Jeon JN, Wang C, Min JW, Jung SY, Yang DC (2012) Changes of ginsenosides and physiochemical properties in ginseng by new 9 repetitive steaming and drying process. Korean J Plant Res 25: 473-481. doi: 10.7732/kjpr.2012.25.4.473 

  20. Hwang CE, Lee DH, Joo OS, Lee HY, Kim SC, Park KS, Um BS, Cho KM (2017) Comparison of physiochemical property, phytochemical contents, and biological activity of soy sauce added with bitter melon powder. Korean J Food Preserv 24: 1138-1148. doi: 10.11002/kjfp.2017.24.8.1138 

  21. Hwang CE, Ahn MJ, Lee HY, Lee BY, Kim HT, Ko JM, Baek IY, Seo WT, Cho KM (2014) Potential probiotic Lactobacillus plantarum P1201 to produce soy-yogurt with enhanced antioxidant activity. Korean J Food Sci Technol 46: 556-565. doi: 10.9721/KJFST.2014.46.5.556 

  22. Ahn MJ, Yuk HJ, Lee HY, Hwang CE, Jeong YS, Hong SY, Kwon OK, Kang SS, Kim HR, Park DS, Cho KM (2015) Effect of the enhanced biological activities and reduced Vitter taste of bitter melon (Momordica charantia L.) by roasting. J Agric Life Sci 49: 107-119 

  23. Hwang CE, Seo WT, Cho KM (2013) Enhanced antioxidant effect of black soybean by cheonggukjang with potential probiotic Bacillus subtilis CSY191. Korean J Microbiol 49: 391-397. doi: 10.7845/kjm.2013.3070 

  24. Seong BJ, Kim SI, Jee MG, Lee HC, Kwon AR, Kim HH, Won JY, Lee KS (2019) Changes in growth active ingredients, and rheological properties of greenhouse-cultivated ginseng sprout during its growth period. Korean J Med Crop Sci 27: 126-135. doi: 10.7783/KJMCS.2019.27.2.126 

  25. Jeong DH, Park HW, Lee DY, Jang IB, Yoo J, Park KC, Lee UH, Kim YJ (2018) Growth and ginsenoside contents of one year old ginseng seedlings in hydroponic culture over a range of days after transplanting. Korean J Med Crop Sci 26: 464-470. doi: 10.7783/KJMCS.2018.26.6.464 

  26. Kang SJ (1987) Nutrition science. Hyungsul Publishing Co. Seoul 

  27. Lee HY, Jung JG, Kim SC, Cho DY, Kim MJ, Lee AR, Son KH, Lee JH, Lee DH, Cho KM (2021) Comprehensive comparison of nutritional constituents and antioxidant activity of cultivated ginseng, mountain- cultivated ginseng, and whole plant parts of mountain-cultivated ginseng. J Appl Biol Chem 64: 453-463. doi: 10.3839/jabc.2021.064 

  28. Sohn KM, Sung TS, Cho YJ, Lee KS, Choi C (1988) Lipids and free sugar composition in ginseng classified by years. J Korean Agric Chem Soc 31: 169-176 

  29. Chae KS, Back MS, Ryu EH, Kim KD, Kwon JW (2018) Physicochemical properties and biological activity of three-year-old and seven-year-old Platycodon grandiflorum extracts. Koran J Food Sci Technol 50: 665-670. doi: 10.9721/KJFST.2018.50.6.665 

  30. Im DH, Kim JH, Gwon HM, Rho IR (2021) Contents of main components according to growth period in Codonopsis lanceolata (Siebold & Zuccarini) Benth. & Hook.f. ex Trautvetter. Korean J Med Crop Sci 29; 51-59. doi: 10.7783/KJMCS.2021.29.1.51 

  31. Kuo YH, Ikegami F, Lambein F (2003) Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry 62: 1087-1091. doi: 10.1016/S0031-9422(02)00658-1 

  32. Tapiero H, Mathe G, Couvreur P, Tew KD (2002) I. Arginine. Biomed Pharmacother 56: 439-445. doi: 10.1016/S0753-3322(02)00284-6 

  33. Lee GA, Chang YK, Park SY, Kim GA, Kim SH, Park KC, Kim YB, Cha SW, Song BH (2012) Comparative analysis on concentration and uptake amount of mineral nutrients in different growth stages and temperatures of Panax ginseng C.A. Meyer with hydroponic culture. Korean J Med Crop Sci 20: 251-258. doi: 10.7783/KJMCS.2012.20.4.251 

  34. Lee JC, Ahn DJ, Byen JS (1988) Studies on the growth and change of mineral nutrient contents in ginseng (Panax ginseng) plant during the growing process. Korean J Crop Sci 32: 471-475 

  35. Kim JH, Moon HT, Chae MI (1977) Studies on the uptake of mineral nutrients by ginseng plant. Korean J Ginseng Sci 2: 35-37 

  36. Lee G, Choi GS, Lee JY, Yun SJ, Kim W, L H, Baik MY, Hwang JK (2017) Proximate analysis and antioxidant activity of cultivated wild Panax ginseng. Food Eng Prog 21: 208-214 

  37. Jeong BG, Jung GR, Kim MS, Moon HG, Park SJ, Chun JY (2019) Ginsenoside contents and antioxidant activities of cultured mountain ginseng (Panax ginseng C.A. Meyer) with different ages. Korean J Food Preserv 26: 90-100. doi: 10.11002/kjfp.2019.26.1.90 

  38. Lee HJ, Lee JH, Jung JT, Lee YJ, Oh MW, Chang JK, Jeong HS, Park CG (2019) Changes in free sugar, coixol contents and antioxidant activities of Adlay sprout (Coix lacryma-jobi L. Var. ma-yuen Stapf.) according to different growth stage. Korean J Med Crop Sci 27: 339-347. doi: 10.7783/KJMCS.2019.27.5.339 

  39. Lee JJ, Park DH, Lee WY (2017) Optimization of microwave-assisted extraction process of Hordeum vulgare L. by response surface methodology. Korean J Food Preserv 24: 949-956. doi: 10.11002/kjfp.2017.24.7.949 

  40. Xie JT, Shao ZH, Vanden Heok TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ, Yuan CS (2006) Antioxidant effects of ginsenoside Re in cardiomyocytes. European J Pharma 532: 201-207. doi: 10.1016/j.ejphar.2006.01.001 

  41. Hou M, Wang R, Zhao S, Wang Z (2021) Ginsnosides in Panax genus and their biosynthesis. Acta Pharmaceutica Sinica B 11: 1813-1834. doi:10.1016/j.apsb.2020.12.017 

  42. Lee KS, Seong BJ, Kim GH, Kim SI, Han SH, Kim HH, Baik ND (2010) Ginsenoside, phenolic acid composition and physiological significances of fermented ginseng leaf. J Korean Soc Food Sci Nutr 39: 1194-1200. doi: 10.3746/jkfn.2010.39.8.1194 

  43. Jung MY, Jeon BS, Bock JY (2002) Free, esterified, and insoluble-bound phenolic acids in white and re Koran ginseng (Panax ginseng C.A. Meyer). Food Chem 79: 105-111. doi: 1 0.1016/S0308-8146(02)00185-1 

  44. Senaratna T, Merritt D, Dixon K, Bunn E, Touchell D, Sivasithamparam K (2003) Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regulation 39: 77-81 

  45. Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture?. Physiol Plant 98: 291-297. doi:10.1034/j.1399-3054.1996.980210.x 

  46. Strnad M (1997) The aromatic cytokinins. Physiol Plant 101: 674-688. doi: 10.1111/j.1399-3054.1997.tb01052.x 

  47. Mutui TM, Mibus H, Serek M (2012) Effect of meta-topolin on leaf senescence and rooting in Pelargonium x hortorum cuttings. Postharvest Biol Technol 63: 107-110. doi: 10.1016/j.postharvbio.2011.09.010 

  48. Widhalm JR, Dudareva N (2015) A Familiar Ring to It: Biosynthesis of Plant Benzoic acid. Molecular Plant 8: 83-97. doi: 10.1016/j.molp.2014.12.001 

  49. Kim SH, Han DS, Park JD (2004) Changes of Some Chemical Compounds of Korean (Posong) Green Tea according to Harvest Periods. Korean J Food Sci Technol 36: 542-546 

  50. Connor AM, Luby JJ, Hancock JF, Berkheimer S, Hanson EJ (2002) Changes in fruit antioxidant activity among Blueberry cultivars during cold-temperature storage. J Agri Food Chem 50: 893-898. doi: 10.1021/jf011212y 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로