$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물공장에서 생산된 새싹인삼의 크기에 따른 진세노사이드 함량 및 항산화 활성 비교
Comparison of ginsenoside contents and antioxidant activity according to the size of ginseng sprout has produced in a plant factory 원문보기

Journal of applied biological chemistry, v.64 no.3, 2021년, pp.253 - 261  

황승하 (Department of Food Science, Gyeongsang National University) ,  김수철 (Department of Food Science, Gyeongsang National University) ,  성진아 (Department of Food Science, Gyeongsang National University) ,  이희율 (Department of Food Science, Gyeongsang National University) ,  조두용 (Department of Food Science, Gyeongsang National University) ,  김민주 (Department of Food Science, Gyeongsang National University) ,  정재각 (Department of Food Science, Gyeongsang National University) ,  정은혜 (Department of Food Science, Gyeongsang National University) ,  손기호 (Department of Horticultural Science, Gyeongsang National University) ,  조계만 (Department of Food Science, Gyeongsang National University)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 식물공장을 통해 생산된 새싹인삼을 크기에 따라 분류하고 이를 지상부와 지하부로 나누어 진세노사이드 함량과 항산화 활성을 비교하였다. 지상부의 경우 총 phenolic 함량은 중간 크기인 M에서 5.16 GAE mg/g로 가장 높았으며 가장 큰 크기인 L에서 2.23 GAE mg/g으로 가장 낮은 함량을 보였다. 지하부 역시 M 크기에서 가장 높은 함량을 보였으나, 큰 차이를 보이지 않았다. 한편, 총 flavonoid 함량 역시 지상부(5.16 RE mg/g) 와 지하부(1.28 RE mg/g) 모두 M 크기에서 높은 함량을 보였다. 지상부의 주요 진세노사이드는 Re (20.33-24.15 mg/g) > Rd (11.36-27.42 mg/g) > Rg1 (4.48-5.54 mg/g) 순 있었고 지하부는 Rb1 (5.09-8.61 mg/g) > Re (4.48-5.54 mg/g) > Rc (3.11-4.11 mg/g) 순 있었다. M 크기의 경우 Re와 Rd는 각각 지상부에서 24.15 mg/g과 27.42 mg/g 및 지하부에서 5.20 mg/g과 1.43 mg으로 약 4배와 19배 높은 함량을 보였다. 지상부에는 F3 및 Rh1이 검출되었으나, 지하부에서는 검출되지 않았다. DPPH (74.95%)와 ABTS (94.47%), hydroxyl (70.39%) 라디칼 소거 활성 및 FRAP (2.169) 활성은 다른 크기들보다 M 크기에서 가장 높은 활성을 보였다.

Abstract AI-Helper 아이콘AI-Helper

In this study, the ginseng sprout has produced through smart farm was classified according to its size and divided into above-ground (AG) and below-ground (BG) parts to compare ginsenoside contents and antioxidant activity. In the case of the AG part, the total phenolic contents were the highest at ...

주제어

참고문헌 (44)

  1. Baek JH, Heo JW, Kim HH, Hong YS, Lee JS (2018) Research-platform design for the korean smart greenhouse based on cloud computing. Protected Horticulture and Plant Factory 27: 27-33. doi: 10.12791/KSBEC.2018.27.1.27 

  2. Park JY, Heo MY (2016) Trends in international standardization of smart agriculture. J Korean Inst of Commu Sci 34: 70-75 

  3. Han JH, Park SJ, Ahn CN, Wee JJ, Kim KY, Park SH (2004) Nutritional composition, ginsenoside content and fundermental safety evaluation with leaf and stem extract of Panax ginseng. J Korean Soc Food Sci Nutr 33: 778-784 

  4. Choi JE, Han JS, Kang SJ, Kim KH, Kim KH, Yook HS (2010) Saponin contents and physicochemical properties of red ginseng extract pouch products collected from ginseng markets in Korea. J Korean Soc Food Sci Nutr 39: 1660-1665. doi: 10.3746/jkfn.2010.39.11.1660 

  5. Seong BJ, Kim SI, Jee MG, Lee HC, Kwon AR, Kim HH, Won JY, Lee KS (2019) Changes in growth, active ingredients, and rheological properties of greenhouse-cultivated ginseng sprout during its growth period. Korean J Med Crop Sci 27: 126-135. doi: 10.7783/KJMCS. 2019.27.2.126 

  6. Lee DU, Ku HB, Lee YJ, Kim GN, Lee SC (2019) Antioxidant and antimelanogenic activities of Panax ginseng sprout extract. J Korean Soc Food Sci Nutr 48: 699-703 

  7. Kim DG, Shin JH, Kang MJ (2018a) Physiochemical characteristics of Panax ginseng C.A. Meyer sprout cultivated with nanobubble water and antioxidant activities of enzymatic hydrolysates. J Agric Life Sci 52: 109-120 

  8. Kim GW, Choi YH, Kim BL, Kim Y, Seong RS, Han MH (2018b) Determination of anti-oxidative and whitening effects of complex extracts obtained from sprout Panax ginseng C.A. Meyer and Cassia nomame (Sieb.) honda on skin. Asian J Beauty Cosmetol 16: 309-320 

  9. Kim KP, Kim KH, Yook HS (2016) Quality characteristics of castella with Panax ginseng sprout powder. J Korean Soc Food Sci Nutr 45: 711-716 

  10. Lee SH (2018) Quality characteristics of Sulgidduk added with Panax ginseng sprout powder. Cul Sci and Hospi Res 24: 133-139 

  11. Park JD (1996) Recent studies on the chemical constituents of Korean ginseng. Korean J Ginseng Sci 20: 389-415 

  12. Sanata S, Kondo N, Shoji J, Tanaka O, Shivata S (1974) Studies on the saponins of ginseng. I. structure of ginseng-Ro, Rb1, Rb2, Rc and Rd. Chem Pharm Bull 22: 421-428. doi: 10.1248/cpb.22.421 

  13. Kitagawa I, Taniyama T, Shibuya H, Nata T, Yoshikawa M (1987) Chemical studies on crude drug processing. V. on the constituents of ginseng radix rubra (2); comparison of the constituents of white ginseng and red ginseng prepared from the same Panax ginseng root. Yakugaku Zasshi 107: 495-505. doi: 10.1248/yakushi1947.107.7_495 

  14. Park SM, Jung EH, Kim JK, Jegal KH, Park CA, Cho IJ, Kim SC (2017) 20S-Protopanaxadiol, and aglycosylated ginsenoside metabolite, induces hepatic stellate cell apoptosis through liver kinase B1-AMP-activated protein kinase activation. J Ginseng Res 41: 392-402. doi: 10.1016/j.jgr.2017.01.012 

  15. Chang HK (2003) Effect of processing methods on the saponin contents of Panax ginseng leaf-tea. Korean J Food & Nutr 16: 46-53 

  16. Yang HC (1977) Studies on the saponin of ginseng leaves. Research Paper in Chungnam University 8: 117-121 

  17. Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T (1991) Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside-Rh2 and adjuvant effects to cisplatin in vivo. Anticancer Drugs (England) 2: 63-67. doi: 10.1097/00001813-199102000-00009 

  18. Singh VK, Agarwal SS, Gupta BM (1984) Immuno-modulatory activity of Panax ginseng extract. Planta Med 50: 462-465. doi: 10.1055/s-2007-969773 

  19. Huo Y, Chen Y (1998) The effect of Panax ginseng extract (GS) on insulin and corticosteroid receptors. J Trad Chin Medi 8: 293-295 

  20. Lee JW, Do JH (2001) Antioxidative activity of ethanol extraction fraction from the Korean red tail ginseng. Korean J Food Sci Technol 33: 497-500 

  21. Folin O, Denis W (1912) On phosphotungsticphosphomolybdic compounds as color reagents. J Biol Che 12: 239-243 

  22. Lee HY, Shin YM, Hwang CE, Lee BW, Kim HT, Ko JM, Baek IY, An MJ, Choi JS, Seo WT, Cho KM (2014) Production of soybean meat using Korean whole soybean and its quality characteristics and antioxidant activity. J Agric Life Sci 48: 139-156. doi: 10.14397/jals.2014.48.5.139 

  23. Jin Y, Kim YJ, Jeon JN, Wang C, Min JW, Jung SY, Yang DC (2012) Changes of ginsenosides and physiochemical properties in ginseng by new 9 repetitive steaming and drying process. Korean J Plant Res 25: 473-481. doi: 10.7732/kjpr.2012.25.4.473 

  24. Hwang CE, Seo WT, Cho KM (2013) Enhanced antioxidant effect of black soybean by Cheonggukjang with potential probiotic Bacillus subtillis CSY191. Korean J Microbiol 49: 391-397. doi: 10.7845/kjm.2013.3070 

  25. Ahn MJ, Yuk HJ, Lee HY, Hwang CE, Jeong YS, Hong SY, Kwon OK, Kang SS, Kim HR, Park DS, Cho KM (2015) Effect of the enhanced biological activities and reduced bitter taste of bitter melon (Momordica charantia L.) by roasting. J Agric Life Sci 49: 107-119. doi: 10.14397/jals.2015.49.2.107 

  26. Hwang CE, Ahn MJ, Lee HY, Lee BY, Kim HT, Ko JM, Baek IY, Seo WT, Cho KM (2014) Potential probiotic Lactobacillus plantarum P1201 to produce soy-yogurt with enhanced antioxidant activity. Korean J Food Sci Technol 46: 556-565. doi: 10.9721/KJFST.2014.46.5.556 

  27. Cho HK, Lee JY, Seo WT, Kim MK, Cho KM (2012) Quality characteristics and antioxidant effects during Makgeolli fermentation by purple sweet potato-rice Nuruk. Korean J Food Sci Technol 44: 728-735. doi: 10.9721/KJFST.2012.44.6.728 

  28. Park CK, Jeon BS, Yang JW (2003) The chemical components of Korean ginseng. Food Industry and Nutr 8: 10-23 

  29. Lee SJ, Park DW, Jang HG, Kim CY, Park YS, Kim TC, Heo BG (2006) Total phenol content, electron donating ability and tyrosinase inhibition activity of pear cut branch extract. Korean J Hort Sci Technol 24: 338-342 

  30. Lee YL, Seo JH, Hong CY, Kim KH, Lee JS, Jeong HS (2020) Antioxidant activities of hydropoic-cultured ginseng roots and leaves. Korean J Food Nutr 33: 058-063. doi: 10.9799/ksfan.2020.33.1.058 

  31. Kim SC, Kang YM, Seong JA, Lee HY, Cho DY, Joo OS, Lee JH, Cho KM (2021) Comprehensive changes of nutritional constituents and antioxidant activities of ginseng sprouts according to the roasting process. Korean J Food Preserv 28: 72-87. doi: 10.11002/kjfp.2021.28.1.72 

  32. Park SJ (2019) Antioxidant activities and whitening effects of ethanol extract from Panax ginseng sprout powder. J Korean Soc Food Sci Nutr 48: 276-281 

  33. Lee SE, Lee SW, Bang JK, Yu YJ, Seong NS (2004) Antioxidant activities of leaf, stem and root of Panax ginseng C. A. Meyer. Korean J Med Crop Sci 12: 237-242 

  34. Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16: 28-37. doi: 10.3346/jkms.2001.16.S.S28 

  35. Kushiro T, Ohno Y, Shibuya M, Ebizuka Y (1997) In vitro conversion of 2,3-oxidosqualene into dammarenediol by panax ginseng microsome. Biol Pharm Bull 20: 292-294. doi: 10.1248/bpb.20.292 

  36. Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93: 2189-2206. doi: 10.1021/cr00022a009 

  37. Kim TD, Kim YS, Han JY, Lim S, Choi YE (2009) Metabolic engineering for production of ginsenosides on panax ginseng. J Plant Biotech 36: 352-359. doi: 10.5010/JPB.2009.36.4.352 

  38. Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kuchiro T, Ebizuka Y (2006) Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tah mining and functional expression assay. FEBS J 273: 948-959. doi: 10.1111/j.1742-4658.2006.05120.x 

  39. Kushiro T, Shibuya M, Ebuzuka Y (1998) β-amyrin synthase: cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J biochem 256: 238-244. doi: 10.1046/j.1432-1327.1998.2560238.x 

  40. Haralampidis K, Trojanowska M, Osbourn AE (2001) Biosynthesis of triterpenoid saponin in plants. Adv Biochem Eng Biotechnol 75: 31-49. doi: 10.1007/3-540-44604-4_2 

  41. Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the bio synthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23: 557-566. doi: 10.1007/s00299-004-0845-4 

  42. Kim MS, Lee MS, Kim SH, Kim SH, Kim HJ, Sung MJ, Kim HY, Kwon DY, Hwang JT (2007) Anti-obesity effects of ginsenoside Rd via AMPK and PPAR gamma. Korean J Biotechnol Bioeng 22: 341-344 

  43. Yang B, Zhao MM, Shi J, Yang N, Jiang YM (2008) Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem 106: 685-690. doi: 10.1016/j.foodchem.2007.06.031 

  44. Jeong BG, Jung GR, Kim MS, Moon HG, Park SJ, Shun JY (2019) Ginsenoside contents and antioxidant activities of cultivated mountain ginseng (Panax ginseng C.A. Meyer) with different ages. Korean J Food Preserv 26: 90-100 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로