$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

뉴로모픽 시스템 향상을 위한 RRAM 기반 시냅스 소자 리뷰
A Review of RRAM-based Synaptic Device to Improve Neuromorphic Systems 원문보기

반도체디스플레이기술학회지 = Journal of the semiconductor & display technology, v.21 no.3, 2022년, pp.50 - 56  

박건우 (경북대학교 전자공학부) ,  김제규 (경북대학교 전자공학부) ,  최건우 (경북대학교 전자공학부)

Abstract AI-Helper 아이콘AI-Helper

In order to process a vast amount of data, there is demand for a new system with higher processing speed and lower energy consumption. To prevent 'memory wall' in von Neumann architecture, RRAM, which is a neuromorphic device, has been researched. In this paper, we summarize the features of RRAM and...

주제어

참고문헌 (30)

  1. T. Tang et al., "Spiking neural network with RRAM: Can we use it for real-world application?," 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 860-865, 2015. 

  2. Y. Xie, "Future memory and interconnect technologies," in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013. IEEE, pp. 964-969,2013. 

  3. C. Mead, "Neuromorphic electronic systems," in Proceedings of the IEEE, vol. 78, no. 10, pp. 1629-1636, 1990. 

  4. S. Mandal and A. Saha, "Memristors act as synapses in neuromorphic architectures," 2016 International Conference on Communication and Electronics Systems (ICCES), pp. 1-5, 2016. 

  5. HU, S. G., et al. "Review of nanostructured resistive switching memristor and its applications." Nanoscience and Nanotechnology Letters, 729-757, 2014. 

  6. H. -S. P. Wong et al., "Metal-Oxide RRAM," in Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June 2012. 

  7. CHANG, Chia-Fu, et al., "Direct Observation of Dual-Filament Switching Behaviors in Ta2O5-Based Memristors." Small, 2017, 13.15: 1603116. 

  8. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: Materials, switching mechanisms, and performance, Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014. 

  9. Z. Liang, "A comprehensive understanding of conductive mechanism of RRAM: from electron conduction to ionic dynamics," 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), pp. 1-6, 2020. 

  10. Xu, Nuo, et al., "Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories." Applied Physics Letters 92. 23 (2008): 232112 

  11. U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, "Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices," in IEEE Transactions on Electron Devices, vol. 56, no. 2, pp. 186-192, Feb. 2009. 

  12. E. R. Kandel and J. H. Schwartz, Principles of Neural Science, 2nd ed. New York: Elsevier, 1985. 

  13. Yang, Kunlong & Huan, Yuxiang & Xu, Jiawei & Zou, Zhuo & Zhan, Yiqiang & Zheng, Lirong & Seoane, Fernando. (2018). Universal and Convenient Optimization Strategies for Three-Terminal Memristors. IEEE Access, pp. 1-1, 2018. 

  14. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum and H. . -S. P. Wong, "An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation," in IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2729-2737, Aug. 2011. 

  15. Y. Xi et al., "In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective," in Proceedings of the IEEE, vol. 109, no. 1, pp. 14-42, Jan. 2021. 

  16. B. Gao et al., "Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 4.4.1-4.4.4, 2017. 

  17. J. Woo and S. Yu, "Resistive Memory-Based Analog Synapse: The Pursuit for Linear and Symmetric Weight Update," in IEEE Nanotechnology Magazine, vol. 12, no. 3, pp. 36-44, Sept. 2018. 

  18. W. Wu, H. Wu, B. Gao, N. Deng, S. Yu and H. Qian, "Improving Analog Switching in HfOx-Based Resistive Memory With a Thermal Enhanced Layer," in IEEE Electron Device Letters, vol. 38, no. 8, pp. 1019-1022, Aug. 2017. 

  19. Yizhou Zhang et al., "Oxide-based filamentary RRAM for deep learning," 2021 J. Phys. D: Appl. Phys, Vol 54, No 8, 2017. 

  20. Wang Z, Yin M, Zhang T, Cai Y, Wang Y, Yang Y and Huang R 2016 Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing Nanoscale, 2016. 

  21. K. -C. Chuang et al., "Impact of the Stacking Order of HfOx and AlOx Dielectric Films on RRAM Switching Mechanisms to Behave Digital Resistive Switching and Synaptic Characteristics," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 589-595, 2019. 

  22. Zahoor, F., Azni Zulkifli, T.Z. & Khanday, F.A. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res Lett 15, 90, 2020. 

  23. S. Yu, X. Guan, and H. S. P. Wong, BConduction mechanism of TiN/HfO(x)/Pt resistive switching memory: A trap-assisted-tunneling model,[ Appl. Phys. Lett., vol. 99, 063507, Aug. 8, 2011. 

  24. Quantan Wu, Writam Banerjee, Jingchen Cao, Zhuoyu Ji, Ling Li, and Ming Liu, "Improvement of durability and switching speed by incorporating nanocrystals in the HfOx based resistive random access memory devices", Appl. Phys. Lett. 113, 023105, 2018. 

  25. Banerjee, W., Maikap, S., Lai, CS. et al., Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots. Nanoscale Res Lett 7, 194 , 2012. 

  26. Q. Liu et al., "Low-Power and Highly Uniform Switching in ZrO2-Based ReRAM With a Cu Nanocrystal Insertion Layer," in IEEE Electron Device Letters, vol. 31, no. 11, pp. 1299-1301, Nov. 2010. 

  27. Shimeng Yu et al., "Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers", 2010 Electrochem. Solid-State Lett. 13 H36. 

  28. B. Traore et al., "On the Origin of Low-Resistance State Retention Failure in HfO2-Based RRAM and Impact of Doping/Alloying," in IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4029-4036, Dec. 2015. 

  29. Sourav Roy et al, "Toward a Reliable Synaptic Simulation Using Al-Doped HfO2 RRAM", ACS Applied Materials & Interfaces 2020 12 (9), 2020. 

  30. Weibing Zhang et al., "Uniformity improvement of Al-doped HfO2 resistive switching memory devices using a novel diffusion approach," 2013 IEEE International Conference of Electron Devices and Solid-state Circuits, 2013, pp. 1-2. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로