$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

과학적 실행 기반의 과학 교육에서 개념 학습의 가능성 고찰 -상황 학습 이론과 개념적 행위 주체성을 중심으로-
Possibility of Science Concept Learning in Scientific Practice-Based Science Education: A Review Focused on Situated Learning Theories and Conceptual Agency 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.42 no.4, 2022년, pp.477 - 486  

오필석 (경인교육대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 상황 학습 이론과 실행 기반의 과학 교육에 관한 문헌들에 대한 고찰을 통해 과학적 실행 중심의 수업에서 과학 개념학습의 가능성을 살펴보았다. 먼저, 상황 학습 이론이 학생들의 과학적 실행에의 참여를 강조하는 최근 과학 교육 개혁의 흐름과 관련이 깊으며, 상황 학습의 관점에서 개념 학습은 학습자가 개념을 자원으로 활용하며 실행에 참여하는 동안 개념적 행위 주체성을 발현하여 개념을 지속적으로 발전시키는 과정을 통해 이루어진다는 것을 알 수 있었다. 또, 이러한 상황 학습 이론은 과학적 실행 기반의 수업에서 과학 개념을 학습하는 데에도 적용된다는 것을 확인하였다. 즉, 과학적 실행 중심의 과학 수업에서는 과학 개념이 자원으로 활용되며, 과학 개념을 자원으로 활용하는 동안 학생들은 과학적 실행에 더 잘 참여할 수 있고, 과학적 실천에의 참여는 개념적 행위 주체성의 발현을 통해 개념 학습을 더욱 촉진할 수 있다. 이러한 고찰의 내용이 학교 과학 교육에 주는 시사점을 논의하였다.

Abstract AI-Helper 아이콘AI-Helper

This study explored a possibility of science concept learning in scientific practice-based science instruction through the review of literature about situated learning theories and practice-based science education. It was revealed that the situated learning theories were closely related to the recen...

주제어

참고문헌 (66)

  1. Abrahams, I., & Reiss, M J. (2012). Practical work: Its effectiveness in primary and secondary schools in England. Journal of Research in Science Teaching, 49(8), 1035-1055. 

  2. Aleong, R. J., & Adams, R. (2020, June). A situative understanding of the NGSS science and engineering practices. Paper presented at 2020 ASEE Virtual Annual Conference. 

  3. Arnseth, H. C. (2008). Activity theory and situated learning theory: Contrasting views of educational practice. Pedagogy, Culture & Society, 16(3), 289-302. 

  4. Ausubel, D. P. (1978). Educational psychology: A cognitive view (2nd ed.). New York, NY: Holt, Rinehart & Winston. 

  5. Barth-Cohen, L. A., & Braden, S. H. (in press). Unpacking the complexity in learning to observe in field geology. Cognition and Instruction. 

  6. Bateman, K., Wilson, C. G., Williams, R., & Tikoff, B., & Shipley, T. F. (in press). Explicit instruction of scientific uncertainty in an undergraduate geoscience field-based course. Science & Education. 

  7. Bereiter, C., Scardamalia, M., Cassells, C., & Hewitt, J. (1997). Postmodernism, knowledge building, and elementary science. The Elementary School Journal, 97(4), 97(4), 329-340. 

  8. Bliss, J. (1995). Piaget and after: The case of learning science. Studies in Science Education, 25, 139-172. 

  9. Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42. 

  10. Chang, H. (2011). The philosophical grammar of scientific practice. International Studies in the Philosophy of Science, 25(3), 205-221. 

  11. Chang, H. (2012). Is water H2O? Evidence, realism and pluralism. New York, NY: Springer. 

  12. Chang, H. (2014). Epistemic activities and systems of practice: Unit of analysis in philosophy of science after the practice turn. In L. Soler, S. Zwart, M. Lynch & V. Israel-Jost (Eds.), Science after the practice turn in the philosophy, history, and social studies of science (pp. 67-79). New York, NY: Routledge. 

  13. Chen, Y.-C. (2022). Epistemic uncertainty and the support of productive struggle during scientific modeling for knowledge co-development. Journal of Research in Science Teaching, 59, 383-422. 

  14. Chen, Y.-C., & Qiao, X. (2020). Using students' epistemic uncertainty as a pedagogical resource to develop knowledge in argumentation. International Journal of Science Education, 42(13), 2145-2180. 

  15. Cheng, M.-F., & Brown, D. E. (2010). Conceptual resources in self-developed explanatory models: The importance of integrating conscious and intuitive knowledge. International Journal of Science Education, 32, 2367-2392. 

  16. Cho, H., & Shon, M. (2015). When learning by practice could be situated learning: Exploring implications for contextual instructional design. The Journal of Curriculum Studies, 33(4), 201-226. 

  17. Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122. 

  18. Eberbach, C., & Crowley, K. (2009). From everyday to scientific observation: How children learn to observe the biologist's world. Review of Educational Research, 79(1), 39-68. 

  19. Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399-483. 

  20. Eylon, B.-S., & Linn, M. C. (1988). Learning and instruction: An examination of four research perspectives in science education. Review of Educational Research, 58(3), 251-301. 

  21. Ford, D. J. (2005). The challenges of observing geologically: Third graders' descriptions of rock and mineral properties. Science Education, 89(2), 276-295. 

  22. Froyland, M., Remmen, K. B., & Sorvik, G. O. (2016). Namedropping or understanding? Teaching to observe geologically. Science Education, 100(5), 923-951. 

  23. Greeno, J. G. (1995). Understanding concepts in activity. In C. A. Weaver III, S. Mannes, & C. R. Feltcher (Eds.), Discourse comprehension: Essays in honor of Walter Kintsch (pp. 65-95). Hillsdale, NJ: Lawrence Erlbaum Associates. 

  24. Greeno, J. G. (1997). On claims that answer the wrong questions. Educational Researcher, 26(1), 5-17. 

  25. Greeno, J. G. (2006) Authoritative, accountable positioning and connected, general knowing: Progressive themes in understanding transfer. The Journal of the Learning Sciences, 15(4), 537-547. 

  26. Greeno, J. G. (2012). Concepts in activities and discourses. Mind, Culture, and Activity, 19, 310-313. 

  27. Greeno, J. G., & Engestrom, Y. (2014). Learning in activity. In R. K. Sawyer (Ed.), The cambridge handbook of the learning sciences (2nd ed., pp. 128-147). New York, NY: Cambridge University Press. 

  28. Greeno, J. G., & the Middle School Mathematics Through Applications Project Group (MMAP) (1998). The situativity of knowing, learning, and research. American Psychologist, 53(1), 5-26. 

  29. Greeno, J. G., & van de Sande, C. (2007). Perspectival understanding of conceptions and conceptual growth in interaction. Educational Psychologist, 42(1), 9-23. 

  30. Hall, R., & Greeno, J. G. (2008). Conceptual learning. In T. L. Good (Ed.), 21st century education: A reference handbook (pp. 212-221). Thousand Oaks, CA: Sage. 

  31. Kawasaki, J., & Sandoval, W. A. (2019). The role of teacher framing in producing coherent NGSS-aligned teaching. Journal of Science Teacher Education, 30(8), 906-922. 

  32. Kawasaki, J., & Sandoval, W. A. (2020). Examining teachers' classroom strategies to understand their goals for student learning around the science practices in the Next Generation Science Standards. Journal of Science Teacher Education, 31(4), 384-400. 

  33. Kim, M., & Tan, A.-L. (2011). Rethinking difficulties of teaching inquiry- based practical work: Stories from elementary pre-service teachers. International Journal of Science Education, 33(4), 465-486. 

  34. Konicek-Moran, R., & Keeley, P. (2015). Teaching for conceptual understanding in science. Arlington, VA: National Science Teachers Association Press. 

  35. Lave, J. (1991). Situating learning in communities of practice. In L. B. Resnick, J. M. Levine & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 63-82). Washington, DC: American Psychological Association. 

  36. Lave, J. (1996). Teaching, as learning, in practice. Mind, Culture, and Activity, 3(3), 149-164. 

  37. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press. 

  38. Manz, E. (2012). Understanding the codevelopment of modeling practice and ecological knowledge. Science Education, 96, 1071-1105. 

  39. Manz, E. (2015). Resistance and the development of scientific practice: Designing the mangle into science instruction. Cognition and Instruction, 33(2), 89-124. 

  40. Manz, E., Lehrer, R., & Schauble, L. (2020). Rethinking the classroom science investigation. Journal of Research in Science Teaching, 57(7), 1148-1174. 

  41. Metz, K. E. (1995). Reassessment of developmental constraints on children's science instruction. Review of Educational Research, 65(2), 93-127. 

  42. Miller, E. C., & Krajcik, J. S. (2019). Promoting deep learning through project-based learning: A design problem. Disciplinary and Interdisciplinary Science Education Research, 1:7. 

  43. Moore, C. (2019). Creating scientists: Teaching and assessing science practice for the NGSS. New York, NY: Routledge. 

  44. NGSS Lead States (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press. 

  45. National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press 

  46. Nordine, J., Krajcik, J., Fortus, D., & Neumann, K. (2019). Using storylines to support three-dimensional learning in project-based instruction. Science Scope, 42(6), 86-92. 

  47. Nordine, J., & Lee, O. (2021). Crosscutting concepts: Strengthening science and engineering learning. Arlington, VA: National Science Teachers Association Press. 

  48. Novak, J. D. (2005). Results and implications of a 12-year longitudinal study of science concept learning. Research in Science Education, 35, 23-40. 

  49. Oh, P. S. (2006). Participation metaphor for learning and its implication for science teaching and learning. Journal of the Korean Earth Science Society, 27(2), 140-148. 

  50. Oh, P. S. (2015). A theoretical review and trial application of the 'resourcesbased view' (RBV) as an alternative cognitive theory. Journal of the Korean Association for Science Education, 35(6), 971-984. 

  51. Oh, P. S. (2020). A critical review of the skill-based approach to scientific inquiry in science education. Journal of the Korean Association for Science Education, 40(2), 141-150. 

  52. Oh, P. S. (in press). How a student uses knowledge as a resource to solve scientific problems: A case study on science learning as rediscovery. Science & Education. 

  53. Passmore, C., Schwarz, C. V., & Mankowski, J. (2017). Developing and using models. In C. V. Schwarz, C. Passmore & B. J. Reiser (Eds.), Helping students make sense of the world using next generation science and engineering practices (pp. 109-134). Arlington, VA: National Science Teachers Association Press. 

  54. Pickering, A. (1995). The mangle of practice: Time, agency, and science. Chicago, IL: University of Chicago Press. 

  55. Remmen, K. B., & Froyland, M. (2020) Students' use of observation in geology: Towards 'scientific observation' in rock classification, International Journal of Science Education, 42(1), 113-132. 

  56. Roth, W.-M. (1995). Authentic school science: Knowing and learning in open-inquiry science laboratories. Dordrecht, The Netherlands: Kluwer Academic. 

  57. Sadler, T. D. (2009) Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45(1), 1-42. 

  58. Schwarz, C. V., Passmore, C., & Reiser. B. J. (2017). Moving beyond "knowing about" science to making sense of the world. In C. V. Schwarz, C. Passmore & B. J. Reiser (Eds.), Helping students make sense of the world using next generation science and engineering practices (pp. 3-21). Arlington, VA: National Science Teachers Association Press. 

  59. Scott, P., Asoko, H., & Leach, J. (2007). Student conceptions and conceptual learning in science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 31-56). Mahwah, NJ: Lawrence Erlbaum Associates. 

  60. Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4-13. 

  61. Trumbull, D. J., Bonney, R., & Grudens-Schuck, N. (2005). Developing materials to promote inquiry: Lessons learned. Science Education, 89(6), 879-900. 

  62. Varelas, M., Pappas, C. C., Kane, J. M., Arsenault, A., Hankes, J., & Cowan, B. M. (2008). Urban primary-grade children think and talk science: Curricular and instructional practices that nurture participation and argumentation. Science Education, 92(1), 65-95. 

  63. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press. 

  64. Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gable (Ed.), Handbook of research on science teaching and learning (pp. 177-210). New York, NY: Macmillan. 

  65. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge, UK: Cambridge University Press. 

  66. Zheng, R. (2010). Effects of situated learning on students' knowledge acquisition: An individual differences perspective. Journal of Educational Computing Research, 43(4), 467-487. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로