$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

우울증은 우울한 기분, 무쾌감증, 피로 및 인지 기능 변화를 특징으로 하는 정신질환으로 일상 기능의 저하를 초래한다. 또한, 우울증은 개인의 삶뿐만 아니라 사회적으로도 심각하고 흔한 정신질환이므로 적극적인 치료가 필요하다. 자가소화작용은 정신질환의 병태생리학적 기전에 관여한다. 최근 연구에 따르면, 자가소화작용에 의한 세포사멸신경가소성에 영향을 주어 우울증을 유발하고, 항우울제가 자가소화작용을 조절한다고 알려져 있다. 자가소화작용은 용해소체를 통해 불필요한 세포소기관이나 단백질을 분해하고 제거하는 이화과정이다. 그리고, 세포의 항상성을 유지하는데 필수적이다. 자가소화작용은 스트레스 상황에서 활성화되며 우울증은 스트레스 관련 질병이다. 최근, 신경세포에서 자가소화작용 기전의 역할이 조사되고 있지만, 우울증의 자가소화작용은 완전히 연구되지 않았다. 이 리뷰에서 우울증의 병태생리학적 기전과 치료에 자가소화작용이 관여한다는 새로운 증거를 강조하고자 한다. 증거를 강조하기 위해 자가소화작용이 우울증과 관련되어 있음을 보여주는 임상 및 전임상 연구결과들을 소개한다. 우울증에 대한 자가소화작용의 관련성과 연구의 한계를 이해하는 것은 자가소화작용 조절이 항우울제 개발의 새로운 방향을 제공할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Depression is a psychiatric disorder characterized by depressed mood, anhedonia, fatigue, and altered cognitive function, leading to a decline in daily functioning. In addition, depression is a serious and common mental illness not only in an individual's life but also in society, so it must be acti...

주제어

표/그림 (2)

참고문헌 (62)

  1. Alcocer-Gomez, E., Casas-Barquero, N., Nunez-Vasco, J., Navarro-Pando, J. M. and Bullon, P. 2017. Psychological status in depressive patients correlates with metabolic gene expression. CNS. Neurosci. Ther. 23, 843-845. 

  2. Alcocer-Gomez, E., Casas-Barquero, N., Williams, M. R., Romero-Guillena, S. L., Canadas-Lozano, D., Bullon, P., Sanchez-Alcazar, J. A., Navarro-Pando, J. M. and Cordero, M. D. 2017. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in major depressive disorder. Pharmacol. Res. 121, 114-121. 

  3. Ali, T., Rahman, S. U., Hao, Q., Li, W., Liu, Z., Ali Shah, F., Murtaza, I., Zhang, Z., Yang, X., Liu, G. and Li, S. 2020. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J. Pineal Res. 69, e12667. 

  4. Bateup, H. S., Takasaki, K. T., Saulnier, J. L., Denefrio, C. L. and Sabatini, B. L. 2011. Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J. Neurosci. 31, 8862-8869. 

  5. Cai, Q. and Ganesan, D. 2022. Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiol. Dis. 162, 105582. 

  6. Chen, A., Xiong, L., Tong, Y. and Mao, M. 2013. Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway. Mol. Med. Rep. 8, 1011-1016. 

  7. Chen, S., Guo, W., Qi, X., Zhou, J., Liu, Z. and Cheng, Y. 2019. Natural alkaloids from lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation. Food Funct. 10, 6062-6073. 

  8. Frazer, A. and Benmansour, S. 2002. Delayed pharmacological effects of antidepressants. Mol. Psychiatry 7, S23-S28. 

  9. Gassen, N. C., Hartmann, J., Schmidt, M. V. and Rein, T. 2015. FKBP5/ FKBP51 enhances autophagy to synergize with antidepressant action. Autophagy 11, 578-580. 

  10. Gassen, N. C. and Rein, T. 2019. Is there a role of autophagy in depression and antidepressant action? Front. Psychiatry 10, 337. 

  11. Geng, J., Liu, J., Yuan, X., Liu, W. and Guo, W. 2019. Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol. Appl. Pharmacol. 379, 114688. 

  12. Ghosh, S., Choudhury, S., Chowdhury, O., Mukherjee, S., Das, A., Sain, A., Gupta, P., Adhikary, A. and Chattopadhyay, S. 2020. Inflammation-induced behavioral changes is driven by alterations in Nrf2dependent apoptosis and autophagy in mouse hippocampus: Role of fluoxetine. Cell Signal. 68, 109521. 

  13. Gulbins, A., Schumacher, F., Becker, K. A., Wilker, B., Soddemann, M., Boldrin, F., Muller, C. P., Edwards, M. J., Goodman, M., Caldwell, C. C., Kleuser, B., Kornhuber, J., Szabo, I. and Gulbins, E. 2018. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol. Psychiatry 23, 2324-2346. 

  14. Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H. and Mizushima, N. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889. 

  15. He, S., Zeng, D., Xu, F., Zhang, J., Zhao, N., Wang, Q., Shi, J., Lin, Z., Yu, W. and Li, H. 2019. Baseline serum levels of Beclin-1, but not inflammatory factors, may predict antidepressant treatment response in Chinese Han patients with MDD: A preliminary study. Front. Psychiatry 10, 378. 

  16. Hoeffer, C. A. and Klann, E. 2010. mTOR Signaling: At the crossroads of plasticity, memory, and disease. Trends Neurosci. 33, 67. 

  17. Huang, X., Wu, H., Jiang, R., Sun, G., Shen, J., Ma, M., Ma, C., Zhang, S., Huang, Z., Wu, Q., Chen, G. and Tao, W. 2018. The antidepressant effects of a-tocopherol are related to activation of autophagy via the AMPK/mTOR pathway. Eur. J. Pharmacol. 833, 1-7. 

  18. Jeon, S. H., Kim, S. H., Kim, Y., Kim, Y. S., Lim, Y., Lee, Y. H. and Shin, S. Y. 2011. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem. Biophys. Res. Commun. 413, 311-317. 

  19. Jeong, J. K., Moon, M. H., Lee, Y. J., Seol, J. W. and Park, S. Y. 2013. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol. Aging 34, 146-156. 

  20. Jernigan, C. S., Goswami, D. B., Austin, M. C., Iyo, A. H., Chandran, A., Stockmeier, C. A. and Karolewicz, B. 2011. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1774-1779. 

  21. Jia, J. and Le, W. 2015. Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Neurosci. Bull. 31, 427-434. 

  22. Jiang, P., Guo, Y., Dang, R., Yang, M., Liao, D., Li, H., Sun, Z., Feng, Q. and Xu, P. 2017. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J. Neuroinflammation 14, 239. 

  23. Jiang, Y., Botchway, B. O. A., Hu, Z. and Fang, M. 2019. Overexpression of SIRT1 inhibits corticosterone-induced autophagy. Neuroscience 411, 11-22. 

  24. Johnson, S. A., Fournier, N. M. and Kalynchuk, L. E. 2006. Effect of different doses of corticosterone on depressionlike behavior and HPA axis responses to a novel stressor. Behav. Brain Res. 168, 280-288. 

  25. Kim, H. J., Cho, M. H., Shim, W. H., Kim, J. K., Jeon, E. Y., Kim, D. H. and Yoon, S. Y. 2017. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry 22, 1576-1584. 

  26. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E. and Tanaka, K. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884. 

  27. Kuma, A., Komatsu, M. and Mizushima, N. 2017. Autophagy-monitoring and autophagy-deficient mice. Autophagy 13, 1619-1628. 

  28. Lee, K. M., Hwang, S. K. and Lee, J. A. 2013. Neuronal autophagy and neurodevelopmental disorders. Exp. Neurobiol. 22, 133-142. 

  29. Li, M., Li, C., Yu, H., Cai, X., Shen, X., Sun, X., Wang, J., Zhang, Y. and Wang, C. 2017. Lentivirus-mediated interleukin-1β (IL-1β) knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxietyand depression-like behaviors in mice. J. Neuroinflammation 14, 190. 

  30. Liu, C., Hao, S., Zhu, M., Wang, Y., Zhang, T. and Yang, Z. 2018. Maternal separation induces different autophagic responses in the hippocampus and prefrontal cortex of adult rats. Neuroscience 374, 287-294. 

  31. Ma, J., Hou, L. N., Rong, Z. X., Liang, P., Fang, C., Li, H. F., Qi, H. and Chen, H. Z. 2013. Antidepressant desipramine leads to C6 glioma cell autophagy: implication for the adjuvant therapy of cancer. Anticancer Agents Med. Chem. 13, 254-260. 

  32. Marino, G., Niso-Santano, M., Baehrecke, E. H. and Kroemer, G. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81-94. 

  33. Menzies, F. M., Fleming, A., Caricasole, A., Bento, C. F., Andrews, S. P., Ashkenazi, A., Fullgrabe, J., Jackson, A., Jimenez Sanchez, M., Karabiyik, C., Licitra, F., Lopez Ramirez, A., Pavel, M., Puri, C., Renna, M., Ricketts, T., Schlotawa, L., Vicinanza, M., Won, H., Zhu, Y., Skidmore, J. and Rubinsztein, D. C. 2017. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015-1034. 

  34. Mizushima, N., Yoshimori, T. and Ohsumi, Y. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132. 

  35. O'Connor, J. C., Lawson, M. A., Andre, C., Moreau, M., Lestage, J., Castanon, N., Kelley, K. W. and Dantzer, R. 2009. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry 14, 511-522. 

  36. Pattingre, S., Espert, L., Biard-Piechaczyk, M. and Codogno, P. 2008. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90, 313-323. 

  37. Pierone, B. C., Pereira, C. A., Garcez, M. L. and Kaster, M. P. 2020. Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp. Neurol. 334, 113485. 

  38. Plaza-Zabala, A., Sierra-Torre, V. and Sierra, A. 2017. Autophagy and microglia: Novel partners in neurodegeneration and aging. Int. J. Mol. Sci. 18, 598. 

  39. Rosa, P. B., Ribeiro, C. M., Bettio, L. E., Colla, A., Lieberknecht, V., Moretti, M. and Rodrigues, A. L. 2014. Folic acid prevents depressive-like behavior induced by chronic corticosterone treatment in mice. Pharmacol. Biochem. Behav. 127, 1-6. 

  40. Russell, R. C., Yuan, H. X. and Guan, K. L. 2013. Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57. 

  41. Shelton, R. C., Claiborne, J., Sidoryk-Wegrzynowicz, M., Reddy, R., Aschner, M., Lewis, D. A. and Mirnics, K. 2011. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol. Psychiatry 16, 751-762. 

  42. Shen, W. and Ganetzky, B. 2009. Autophagy promotes synapse development in Drosophila. J. Cell Biol. 187, 71-79. 

  43. Shu, X., Sun, Y., Sun, X., Zhou, Y., Bian, Y., Shu, Z., Ding, J., Lu, M. and Hu, G. 2019. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis. 10, 577. 

  44. Smith, E. D., Prieto, G. A., Tong, L., Sears-Kraxberger, I., Rice, J. D., Steward, O. and Cotman, C. W. 2014. Rapamycin and interleukin-1ss impair brain-derived neurotrophic factor-dependent neuron survival by modulating autophagy. J. Biol. Chem. 289, 20615-20629. 

  45. Stavoe, A. K. H. and Holzbaur, E. L. F. 2019. Axonal autophagy: Mini-review for autophagy in the CNS. Neurosci. Lett. 697, 17-23. 

  46. Thornicroft, G., Chatterji, S., Evans-Lacko, S., Gruber, M., Sampson, N., Aguilar-Gaxiola, S., Al-Hamzawi, A., Alonso, J., Andrade, L., Borges, G., Bruffaerts, R., Bunting, B., de Almeida, J. M., Florescu, S., de Girolamo, G., Gureje, O., Haro, J. M., He, Y., Hinkov, H., Karam, E., Kawakami, N., Lee, S., Navarro-Mateu, F., Piazza, M., Posada-Villa, J., de Galvis, Y. T. and Kessler, R. C. 2017. Undertreatment of people with major depressive disorder in 21 countries. Br. J. Psychiatry 210, 119-124. 

  47. Tsukada, M. and Ohsumi, Y. 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174. 

  48. Wang, J. L., Wang, J. J., Cai, Z. N. and Xu, C. J. 2018. The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. Int. J. Mol. Med. 42, 2481-2488. 

  49. Wang, P., Feng, Y. B., Wang, L., Li, Y., Fan, C., Song, Q. and Yu, S. Y. 2019. Interleukin-6: Its role and mechanisms in rescuing depression-like behaviors in rat models of depression. Brain Behav. Immun. 82, 106-121. 

  50. Wang, Q., Timberlake, M. A. 2nd., Prall, K. and Dwivedi, Y. 2017. The recent progress in animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 77, 99-109. 

  51. Wang, S., Li, B., Qiao, H., Lv, X., Liang, Q., Shi, Z., Xia, W., Ji, F. and Jiao, J. 2014. Autophagy-related gene Atg5 is essential for astrocyte differentiation in the developing mouse cortex. EMBO. Rep. 15, 1053-1061. 

  52. Wang, Z., Liu, S., Pan, W., Guo, Y. and Shen, Z. 2018. Shen Bafilomycin A1 alleviates depression-like symptoms in chronic unpredictable mild stress rats. Mol. Med. Rep. 18, 4587-4594. 

  53. Willner, P. 1997. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology (Berl). 134, 319-329. 

  54. Willner, P. 2005. Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52, 90-110. 

  55. Woo, H., Hong, C. J., Jung, S., Choe, S. and Yu, S. W. 2018. Chronic restraint stress induces hippocampal memory deficits by impairing insulin signaling. Mol. Brain 11, 37. 

  56. Xiao, X., Shang, X., Zhai, B., Zhang, H. and Zhang, T. 2018. Nicotine alleviates chronic stress-induced anxiety and depressive-like behavior and hippocampal neuropathology via regulating autophagy signaling. Neurochem. Int. 114, 58-70. 

  57. Yang, Y., Hu, Z., Du, X., Davies, H., Huo, X. and Fang, M. 2017. miR-16 and fluoxetine both reverse autophagic and apoptotic change in chronic unpredictable mild stress model rats. Front. Neurosci. 11, 428. 

  58. Zeng, M. and Zhou, J. N. 2008. Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal. 20, 659-665. 

  59. Zhang, H., Shang, Y., Xiao, X., Yu, M. and Zhang, T. 2017. Prenatal stress-induced impairments of cognitive flexibility and bidirectional synaptic plasticity are possibly associated with autophagy in adolescent male-offspring. Exp. Neurol. 298, 68-78. 

  60. Zhang, X., Bu, H., Jiang, Y., Sun, G., Jiang, R., Huang, X., Duan, H., Huang, Z. and Wu, Q. 2019. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep. 20, 2867-2874. 

  61. Zhao, Z., Zhang, L., Guo, X. D., Cao, L. L., Xue, T. F., Zhao, X. J., Yang, D. D., Yang, J., Ji, J., Huang, J. Y. and Sun, X. L. 2017. Rosiglitazone exerts an anti-depressive effect in unpredictable chronic mild-stress-induced depressive mice by maintaining essential neuron autophagy and inhibiting excessive astrocytic apoptosis. Front. Mol. Neurosci. 10, 1-16. 

  62. Zschocke, J., Zimmermann, N., Berning, B., Ganal, V., Holsboer, F. and Rein, T. 2011. Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons-dissociation from cholesterol homeostasis. Neuropsychopharmacology 36, 1754-1768. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로