$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

충남 부여군 문화재의 산사태 민감성 평가
Assessing the Landslide Susceptibility of Cultural Heritages of Buyeo-gun, Chungcheongnam-do 원문보기

環境復元綠化 = Journal of the Korean Society of Environmental Restoration Technology, v.25 no.5, 2022년, pp.1 - 13  

김준우 (청주대학교 대학원 환경조경학과) ,  김호걸 (청주대학교 휴먼환경디자인학부 조경도시계획전공)

Abstract AI-Helper 아이콘AI-Helper

The damages caused by landslides are increasing worldwide due to climate change. In Korea, damages from landslides occur frequently, making it necessary to develop the effective response strategies. In particular, there is a lack of countermeasures against landslides in cultural heritage areas. The ...

주제어

표/그림 (12)

참고문헌 (36)

  1. Arabameri A.Pradhan B.Rezaei K.Sohrabi M and Kalantari Z. 2019. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. Journal of Mountain Science 16(3):595-618. 

  2. Baekje Cultural Foundation. 2018. Buyeo Traditional Building Investigation Report 

  3. Chen W.Peng J.Hong H.Shahabi H.Pradhan B.Liu J.Zhu AX.Pei X and Duan Z. 2018a. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County Jiangxi Province China. Science of the total environment 626: 1121-1135. 

  4. Chen W.Xie X.Wang J.Pradhan B.Hong H.Bui DT.Duan Z and Ma J. 2017. A comparative study of logistic model tree random forest and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 151: 147-160. 

  5. Chen W.Zhang S.Li R and Shahabi H. 2018b. Performance evaluation of the GIS-based data mining techniques of best-first decision tree random forest and naive Bayes tree for landslide susceptibility modeling. Science of the total environment 644:1006-1018. 

  6. Dai FC and Lee CF. 2002. Landslide characteristics and slope instability modeling using GIS Lantau Island Hong Kong. Geomorphology 42(3-4):213-228. 

  7. Dhakal AS and Sidle RC. 2004. Distributed simulations of landslides for different rainfall conditions. Hydrological Processes 18(4):757-776. 

  8. Di Napoli M.Di Martire D.Bausilio G.Calcaterra D.Confuorto P.Firpo M.Pepe G and Cevasco A. 2021. Rainfall-induced shallow landslide detachment transit and runout susceptibility mapping by integrating machine learning techniques and GIS-based approaches. Water 13(4) : 488. 

  9. Floris M and Bozzano F. 2008. Evaluation of landslide reactivation: a modified rainfall threshold model based on historical records of rainfall and landslides. Geomorphology 94(1-2):40-57. 

  10. Hamza T and Raghuvanshi TK. 2017. GIS based landslide hazard evaluation and zonation-A case from Jeldu District Central Ethiopia. Journal of King Saud University-Science 29(2):151-165. 

  11. Helen K. 2015. Tracing UNGEGN's evolving interest in geographical names as cultural heritage. Geographical Names as Cultural Heritage Proceedings of the International Symposium on Toponymy Seoul Kyung Hee University Press. 

  12. KEREKES AH.POSZET SL and Andrea GAL. 2018. Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj-Napoca Municipality Romania. Revista de Geomorfologie 20(1):130-146. 

  13. Kim HG.Lee DK and Park C. 2018a. Assessing the cost of damage and effect of adaptation to landslides considering climate change. Sustainability 10(5):1628. 

  14. Kim HG. 2018 Analysis of Potential Landslide Risk Areas to Support Local Government's Response to Climate Change Disaster: Targeting Chungcheong Area. Urban Studies (14):93-118. 

  15. Kim HG and Park CY. 2021a. Landslide susceptibility analysis of photovoltaic power stations in Gangwon-do Republic of Korea. Geomatics Natural Hazards and Risk 12(1):2328-2351. 

  16. Kim MS.Onda Y.Uchida T.and Kim JK. 2016. Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology 271:40-54. 

  17. Kim JW and Kim HG. 2021b. Landslide Susceptibility Analysis by Type of Cultural Heritage Site Using Ensemble Model: Case Study of the Chungcheong Region of South Korea. Sensors and Materials 33(11): 3819-3833. 

  18. Kornejady A.Ownegh M and Bahremand A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena 152:144-162. 

  19. Lazzari M.Gioia D.and Anzidei B. 2018. Landslide inventory of the Basilicata region (Southern Italy). Journal of Maps 14(2): 348-356. 

  20. Liberata Ullo S.Mohan A.Sebastianelli A.Ejaz Ahamed S.Kumar B.Dwivedi R and Sinha GR. 2020. A New Mask R-CNN Based Method for Improved Landslide Detection. arXiv e-prints pp.arXiv-2010. 

  21. Lollino G.Giordan D.Crosta GB.Corominas J.Azzam R.Wasowski J and Sciarra N. eds. 2014. Engineering geology for society and territory-Volume 2: Landslide processes (Vol. 2). Springer. 

  22. Lombardo L.Bachofer F.Cama M.Marker M and Rotigliano E. 2016. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily Italy). Earth Surface Processes and Landforms 41(12): 1776-1789. 

  23. National Heritage Portal. 1984. Cultural Heritage Image. Cultural Heritage Administration. https://www.heritage.go.kr/main/?v1666682807467/. (accessed Dec. 2021) 

  24. National Heritage Portal. 1992. Cultural Heritage Image. Cultural Heritage Administration. https://www.heritage.go.kr/main/?v1666682807467/. (accessed Dec. 2021) 

  25. NSDIP(National Spatial Data Infrastructure Potal). 2022. Forestry Statistical Yearbook. Korea fores servicehttps. https://www.data.go.kr/data/15087207/fileData.do/.(accessed Jul. 2022) 

  26. Poudel KR.Hamal R and Paudel N. 2020. Landslide susceptibility assessment: identification and hazard mapping of Gandaki Province Nepal. Prithvi Academic Journal 3:11-21. 

  27. Ridgeway G. 2007. Generalized Boosted Models: A guide to the gbm package. Update 1(1) 

  28. Rossi M.Guzzetti F.Reichenbach P.Mondini AC and Peruccacci S. 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114(3):129-142. 

  29. Sabbioni C.Cassar M.Brimblecombe P and Lefevre RA. 2008. Vulnerability of cultural heritage to climate change. European and Mediterranean Major Hazards Agreement: 1-24. 

  30. Taalab K.Cheng T and Zhang Y. 2018. Mapping landslide susceptibility and types using Random Forest. Big Earth Data 2(2): 159-178. 

  31. Tang H.Wasowski J and Juang CH. 2019. Geohazards in the three Gorges Reservoir Area China-Lessons learned from decades of research. Engineering Geology 261: 105267. 

  32. Vorpahl P.Elsenbeer H.Marker M and Schroder B. 2012. How can statistical models help to determine driving factors of landslides?. Ecological Modelling 239:27-39. 

  33. Wang Y.Fang Z and Hong H. 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County China. Science of the total environment 666: 975-993. 

  34. Wu Y.Ke Y.Chen Z.Liang S.Zhao H and Hong H. 2020. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena 187:104396. 

  35. Yang IT.Chun KS and Park JH. 2006. The effect of landslide factor and determination of landslide vulnerable area using GIS and AHP. Journal of Korean Society for Geospatial Information Science 14(1):3-12. 

  36. Yi Y.Zhang Z.Zhang W.Xu Q.Deng C and Li Q. 2019. GIS-based earthquaketriggered-landslide susceptibility mapping with an integrated weighted index model in Jiuzhaigou region of Sichuan Province China. Natural Hazards and Earth System Sciences 19(9):1973-1988. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로