최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of Korean Tunnelling and Underground Space Association = 한국터널지하공간학회논문집, v.24 no.6, 2022년, pp.513 - 524
함상우 (서울시립대학교 대학원 공간정보공학과) , 배수현 (서울시립대학교 대학원 공간정보공학과) , 이임평 (서울시립대학교 공간정보공학과) , 이규필 (한국건설기술연구원 지반연구본부) , 김동규 (한국건설기술연구원 지반연구본부)
Recently, detecting damages of civil infrastructures from digital images using deep learning technology became a very popular research topic. In order to adapt those methodologies to the field, it is essential to explain robustness of deep learning models. Our research points out that the existing p...
Bianchi, E., Abbott, A.L., Tokekar, P., Hebdon, M. (2021), "COCO-Bridge: structural detail data set for bridge inspections", Journal of Computing in Civil Engineering, Vol. 35, No. 3, 04021003.
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", arXiv:1802:02611, pp. 1-23.
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S.O., Villena-Martinez, V., Garcia-Rodriguez, J. (2017), "A review on deep learning techniques applied to semantic segmentation", arXiv:1704:06857, pp. 1-22.
Hsieh, Y.A., Tsai, Y.J. (2020), "Machine learning for crack detection: review and model performance comparison", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020038.
Liu, Y., Yao, J., Lu, X., Xie, R., Li, L. (2019), "DeepCrack: A deep hierarchical feature learning architecture for crack segmentation", Neurocomputing, Vol. 338, pp. 139-153.
Middha, L. (2020), "Crack segmentation dataset", https://www.kaggle.com/lakshaymiddha/crack-segmen tation-dataset (September 20, 2022).
MMSegmentation Contributors (2020), "OpenMMLab semantic segmentation toolbox and benchmark", https://github.com/open-mmlab/mmsegmentation (September 20, 2022).
Mundt, M., Majumder, S., Murali, S., Panetsos, P., Ramesh, V. (2019), "Meta-learning convolutional neural architectures for multi-target concrete defect classification with the concrate defect bridge image dataset", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, California, pp. 11196-11205.
OurBrain (2022), "Big Eye System", OurBrain, http://ourbrain.co.kr/ (September 20, 2022).
Paik, S.H., Choi, D.Y., Kim, Y.K., Jung, S.W., Kim, D.N. (2021), "Implementation of the drones with deep-learning crack detection analysis for inspection of bridge", The Journal of Korean Institute of Information Technology, Vol. 19, No. 3, pp. 45-52.
Park, G. (2022), "Building crack detection images", AI Hub, https://aihub.or.kr/aihubdata/data/view.do?currMenu115&topMenu100&aihubDataSerealm&dataSetSn162 (September 20, 2022).
Scikit-image contributors (2022), "Morphological filtering", Scikit-image, https://scikit-image.org/docs/stable/auto_examples/applications/plot_morphology.html (September 20, 2022).
Tsai, Y.C., Chatterjee, A. (2017), "Comprehensive, quantitative crack detection algorithm performance evaluation system", Journal of Computing in Civil Engineering, Vol. 31, No. 5, 04017047.
Zhang, T.Y., Suen, C.Y. (1984), "A fast parallel algorithm for thinning digital patterns", Communications of the ACM, Vol. 27, No. 3, pp.236-239.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.