$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

딥러닝 기반 터널 콘크리트 라이닝 균열 탐지
Deep learning based crack detection from tunnel cement concrete lining 원문보기

Journal of Korean Tunnelling and Underground Space Association = 한국터널지하공간학회논문집, v.24 no.6, 2022년, pp.583 - 598  

배수현 (서울시립대학교 대학원 공간정보공학과) ,  함상우 (서울시립대학교 대학원 공간정보공학과) ,  이임평 (서울시립대학교 공간정보공학과) ,  이규필 (한국건설기술연구원 지반연구본부) ,  김동규 (한국건설기술연구원 지반연구본부)

초록
AI-Helper 아이콘AI-Helper

인력기반 터널 점검은 점검자의 주관적인 판단에 영향을 받으며 지속적인 이력관리가 어렵다. 따라서 최근에는 딥러닝 기반 자동 균열 탐지 연구가 활발히 진행되고 있다. 하지만 대부분의 연구에서는 사용하는 대규모 공개 균열 데이터셋은 터널 내부에서 발생하는 균열과 매우 상이하다. 또한 현행 터널 상태평가에서 정교한 균열 레이블을 구축하기 위해서는 추가적인 작업이 요구된다. 이에 본 연구는 균열 형상이 다소 단순하게 표현된 기존 데이터셋을 딥러닝 모델에 입력하여 균열 탐지 성능을 개선하는 방안을 제시한다. 기존 터널 데이터셋, 고품질 터널 데이터셋과 공개 균열 데이터셋을 조합하여 학습한 딥러닝 모델의 성능 평가와 비교를 수행한다. 그 결과 Cross Entropy 손실함수를 사용한 DeepLabv3+에 공개 데이터셋, 패치 단위 분류와 오버샘플링을 수행한 터널 데이터셋을 모두 학습한 경우 성능이 가장 좋았다. 향후 기 구축된 터널 영상 취득 시스템 데이터를 딥러닝 모델 학습에 효율적으로 활용하기 위한 방안을 수립하는 데 기여할 것으로 기대한다.

Abstract AI-Helper 아이콘AI-Helper

As human-based tunnel inspections are affected by the subjective judgment of the inspector, making continuous history management difficult. There is a lot of deep learning-based automatic crack detection research recently. However, the large public crack datasets used in most studies differ signific...

주제어

표/그림 (16)

참고문헌 (25)

  1. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), Munich, pp. 801-818. 

  2. Chu, H., Wang, W., Deng, L. (2022), "Tiny-Crack-Net: a multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks", Computer-Aided Civil and Infrastructure Engineering, Vol. 37, No. 14, pp. 1914-1931. 

  3. Eisenbach, M., Stricker, R., Seichter, D., Amende, K., Debes, K., Sesselmann, M., Ebersbach, D., Stoeckert, U., Gross, H.M. (2017), "How to get pavement distress detection ready for deep learning? a systematic approach", Proceedings of the 2017 International Joint Conference on Neural Networks, Anchorage, pp. 2039-2047. 

  4. Hadinata, P.N., Simanta, D., Eddy, L., Nagai, K. (2021), "Crack detection on concrete surfaces using deep encoder-decoder convolutional neural network: a comparison study between U-Net and DeepLabV3+", Journal of the Civil Engineering Forum, Vol. 7, No. 3, pp. 323-334. 

  5. Ham, S., Bae, S., Kim, H., Lee, I., Lee, G.P., Kim, D. (2021), "Training a semantic segmentation model for cracks in the concrete lining of tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 6, pp. 549-558. 

  6. Han, C., Ma, T., Huyan, J., Huang, X., Zhang, Y. (2021), "CrackW-Net: a novel pavement crack image segmentation convolutional neural network", IEEE Transactions on Intelligent Transportation Systems, pp. 1-10. 

  7. Han, X., Zhao, Z., Chen, L., Hu, X., Tian, Y., Zhai, C., Wang, L., Huang, X. (2022), "Structural damagecausing concrete cracking detection based on a deep-learning method", Construction and Building Material, Vol. 337, No. 27, 127562. 

  8. Hsieh, Y.A., Tsai, Y.J. (2020), "Machine learning for crack detection: review and model performance comparison", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020038. 

  9. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen, Y.W., Wu, J. (2020), "UNet3+: a full-scale connected UNet for medical image segmentation", Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, pp. 1055-1059. 

  10. Ji, A., Xue, X., Wang, Y., Luo, X., Xue, W. (2020), "An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement", Automation in Construction, Vol. 114, 103176. 

  11. Johnson, J.M., Khoshgoftaar, T.M. (2019), "Survey on deep learning with class imbalance", Journal of Big Data, Vol. 6, No. 1, pp. 1-54. 

  12. Kaiser, P., Wegner, J.D., Lucchi, A., Jaggi, M., Hofmann, T., Schindler, K. (2017), "Learning aerial image segmentation from online maps", IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 11, pp. 6054-6068. 

  13. Kim, A.R., Kim, D.H., Byun, Y.S., Lee, S.W. (2018), "Crack detection of concrete structure using deep learning and image processing method in geotechnical engineering", Journal of the Korean Geotechnical Society, Vol. 34, No. 12, pp. 145-154. 

  14. Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K. (2019), "Augmentation for small object detection", arXiv:1902.07296. 

  15. Li, D., Duan, Z., Hu, X., Zhang, D. (2021), "Pixel-level recognition of pavement distresses based on U-Net", Advances in Materials Science and Engineering, Vol. 2021, 5586615. 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, Venice, pp. 2980-2988. 

  17. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P. (2016), "Convolutional neural networks for large-scale remote-sensing image classification", IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 2, pp. 645-657. 

  18. Middha, L., Crack segmentation dataset, https://www.kaggle.com/lakshaymiddha/crack-segmentation-dataset (September 20, 2022). 

  19. Rolnick, D., Veit, A., Belongie, S., Shavit, N. (2017), "Deep learning is robust to massive label noise", arXiv:1705.10694. 

  20. Ronneberger, O., Fischer, P., Brox, T. (2015), "U-net: convolutional networks for biomedical image segmentation", Proceedings of the International Conference on Medical Image Computing and ComputerAssisted Intervention, Munich, pp. 234-241. 

  21. Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z. (2016), "Automatic road crack detection using random structured forests", IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 12, pp. 3434-3445. 

  22. Shim, S., Choi, S.I., Kong, S.M., Lee, S.W. (2021), "Deep learning algorithm of concrete spalling detection using focal loss and data augmentation", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 4, pp. 253-263. 

  23. Wang, Z., Xu, G., Ding, Y., Wu, B., Lu, G. (2020), "A vision-based active learning convolutional neural network model for concrete surface crack detection", Advances in Structural Engineering, Vol. 23, No. 13, pp. 2952-2964. 

  24. Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S. (2012), "Cracktree: automatic crack detection from pavement images", Pattern Recognition Letters, Vol. 33, No. 3, pp. 227-238. 

  25. Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S. (2018), "Deepcrack: learning hierarchical convolutional features for crack detection", IEEE Transactions on Image Processing, Vol. 28, No. 3, pp. 1498-1512. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로