최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기대한원격탐사학회지 = Korean journal of remote sensing, v.39 no.6/1, 2023년, pp.1413 - 1425
서영민 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 윤유정 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 김서연 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 강종구 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 정예민 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 최소연 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 임윤교 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 이양원 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공)
The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, ac...
Carvajal-Ramirez, F., Marques da Silva, J. R., Aguera-Vega, F., Martinez-Carricondo, P., Serrano, J., and?Moral, F. J., 2019. Evaluation of fire severity?indices based on pre- and post-fire multispectral?imagery sensed from UAV. Remote Sensing,?11(9), 993. https://doi.org/10.3390/RS11090993
Chen, Y., Zhao, X., and Jia, X., 2015. Spectral-spatial?classification of hyperspectral data based on deep?belief network. IEEE Journal of Selected Topics?in Applied Earth Observations and Remote?Sensing, 8(6), 2381-2392. https://doi.org/10.1109/JSTARS.2015.2388577
Choi, S. P., Kim, D. H., and Tateishi, R., 2006. Analysis of?forest fire damage areas using spectral reflectance?of the vegetation. Journal of Korean Society for?Geospatial Information Science, 14(2), 89-94.
Chuvieco, E., Mouillot, F., van der Werf, G. R., San?Miguel, J., Tanasse, M., Koutsias, N. et al., 2019.?Historical background and current developments?for mapping burned area from satellite Earth?observation. Remote Sensing of Environment,?225, 45-64. https://doi.org/10.1016/J.RSE.2019.02.013
Collins, L., McCarthy, G., Mellor, A., Newell, G., and?Smith, L., 2020. Training data requirements for?fire severity mapping using Landsat imagery and?random forest. Remote Sensing of Environment,?245, 111839. https://doi.org/10.1016/J.RSE.2020.111839
Djalante, R., 2019. Key assessments from the IPCC?special report on global warming of 1.5℃ and?the implications for the Sendai framework for?disaster risk reduction. Progress in Disaster?Science, 1, 100001. https://doi.org/10.1016/j.pdisas.2019.100001
Domenikiotis, C., Dalezios, N. R., Loukas, A., and Karteris, M., 2002. Agreement assessment of?NOAA/AVHRR NDVI with Landsat TM NDVI?for mapping burned forested areas. International?Journal of Remote Sensing, 23(20), 4235-4246.?https://doi.org/10.1080/01431160110107707
Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.-L.,?Quayle, B., and Howard, S., 2007. A project for?monitoring trends in burn severity. Fire Ecology,?3, 3-21. https://doi.org/10.4996/FIREECOLOGY.0301003
Escuin, S., Navarro, R., and Fernandez, P., 2008. Fire?severity assessment by using NBR (Normalized?Burn Ratio) and NDVI (Normalized Difference?Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote?Sensing, 29(4), 1053-1073. https://doi.org/10.1080/01431160701281072
Fernandez, A., Illera, P., and Casanova, J. L., 1997.?Automatic mapping of surfaces affected by forest?fires in Spain using AVHRR NDVI composite?image data. Remote Sensing of Environment,?60(2), 153-162. https://doi.org/10.1016/S0034-4257(96)00178-2
Korea Forest Service, 2023. 2022 Wildfire statistics annual.?Available online: https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardList.do?bbsIdBBSMSTR_1008&mnNKFS_06_09_05 (accessed on Apr.?17, 2023).
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,?R. E., Hubbard, W. et al., 1989. Backpropagation?applied to handwritten zip code recognition. Neural?Computation, 1(4), 541-551. https://doi.org/10.1162/NECO.1989.1.4.541
Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollar,?P., 2020. Focal loss for dense object detection.?IEEE Transactions on Pattern Analysis and?Machine Intelligence, 42(2), 318-327. https://doi.org/10.1109/TPAMI.2018.2858826
Loboda, T., O'Neal, K. J., and Csiszar, I., 2007. Regionally?adaptable dNBR-based algorithm for burned area?mapping from MODIS data. Remote Sensing of?Environment, 109(4), 429-442. https://doi.org/10.1016/J.RSE.2007.01.017
Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., and Johnson,?B. A., 2019. Deep learning in remote sensing?applications: A meta-analysis and review. ISPRS?Journal of Photogrammetry and Remote Sensing,?152, 166-177. https://doi.org/10.1016/J.ISPRSJPRS.2019.04.015
Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D.?G., Harrison, S. P., and Higuera, P. E., 2008.?Climate and human influences on global biomass?burning over the past two millennia. Nature?Geoscience, 1, 697-702. https://doi.org/10.1038/ngeo313
Marmanis, D., Datcu, M., Esch, T., and Stilla, U., 2016.?Deep learning earth observation classification using?ImageNet pretrained networks. IEEE Geoscience?and Remote Sensing Letters, 13(1), 105-109.?https://doi.org/10.1109/LGRS.2015.2499239
McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers,?B. M., Schweitzer, J., Shuman, J. K. et al., 2020.?Fire as a fundamental ecological process: Research?advances and frontiers. Journal of Ecology, 108(5),?2047-2069. https://doi.org/10.1111/1365-2745.13403
Park, S. W., Kim, H. W., Lee, S. J., Yun, Y. S., Kim, E.?S., Lim, J. H., and Lee, Y. W., 2018. Detection?of forest disaster areas using high-resolution?satellite images with fully convolutional network.?Landscape and Geography, 28(4), 87-101. http://doi.org/10.35149/jakpg.2018.28.4.006
Pleniou, M., and Koutsias, N., 2013. Sensitivity of spectral?reflectance values to different burn and vegetation?ratios: A multi-scale approach applied in a fire?affected area. ISPRS Journal of Photogrammetry?and Remote Sensing, 79, 199-210. https://doi.org/10.1016/J.ISPRSJPRS.2013.02.016
Ronneberger, O., Fischer, P., and Brox, T., 2015. U-Net: Convolutional networks for biomedical?image segmentation. In: Navab, N., Hornegger,?J., Wells, W., Frangi, A. (eds.), Medical image?computing and computer-assisted intervention -?MICCAI 2015, Springer, pp. 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock,?C. E., Allen, R. G., Anderson, M. C. et al., 2014. Landsat-8: Science and product vision?for terrestrial global change research. Remote?Sensing of Environment, 145, 154-172. https://doi.org/10.1016/J.RSE.2014.02.001
Sun, K., Xiao, B., Liu, D., and Wang, J., 2019. Deep?high-resolution representation learning for human?pose estimation. In Proceedings of the 2019?IEEE/CVF Conference on Computer Vision and?Pattern Recognition (CVPR), Long Beach, CA,?USA, June 15-20, pp. 5686-5696. https://doi.org/10.1109/CVPR.2019.00584
Westerling, A. L., and Bryant, B. P., 2007. Climate change?and wildfire in California. Climatic Change, 87,?231-249. https://doi.org/10.1007/s10584-007-9363-z
Zhang, Y., Liu, H., and Hu, Q., 2021. TransFuse:?Fusing transformers and CNNs for medical image?segmentation. In: de Bruijne, M., Cattin, P. C.,?Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert,?C. (eds.), Medical image computing and computer?assisted intervention - MICCAI 2021, Springer,?pp. 14-24. https://doi.org/10.1007/978-3-030-87193-2_2
Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu,?F. et al., 2017. Deep learning in remote sensing: A?comprehensive review and list of resources. IEEE?Geoscience and Remote Sensing Magazine, 5(4),?8-36. https://doi.org/10.1109/MGRS.2017.2762307
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.