최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기공업화학 = Applied chemistry for engineering, v.34 no.6, 2023년, pp.567 - 575
정윤성 (충남대학교 에너지과학기술대학원) , (충남대학교 에너지과학기술대학원) , (충남대학교 에너지과학기술대학원) , 김태근 (충남대학교 에너지과학기술대학원)
Water electrolysis is undergoing active research as one of the promising technologies for producing effective green hydrogen. Using seawater directly as a raw material for a water electrolysis system can solve the problem of the limitations of existing freshwater raw materials, as seawater accounts ...
J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola,?Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrog. Energy, 44, 15072-15086 (2019).
B. L. Salvi and K. A. Subramanian, Sustainable development of?road transportation sector using hydrogen energy system, Renew.?Sustain. Energy Rev., 51, 1132-1155 (2015).
Global Hydrogen Review 2022, Glob. Hydrog. Rev. 2022 (2022).
M. A. Pellow, C. J. M. Emmott, C. J. Barnhart, and S. M. Benson,?Hydrogen or batteries for grid storage? A net energy analysis,?Energy Environ. Sci., 8, 1938-1952 (2015).
J. Gorre, F. Ruoss, H. Karjunen, J. Schaffert, and T. Tynjala, Cost?benefits of optimizing hydrogen storage and methanation capacities?for Power-to-Gas plants in dynamic operation, Appl. Energy, 257,?(2020).
S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet,?Current status, research trends, and challenges in water electrolysis?science and technology, Int. J. Hydrogen Energy, 45, 26036-26058?(2020).
M. El-Shafie, Hydrogen production by water electrolysis technologies: A review, Results Eng., 20, 101426 (2023).
A. Buttler and H. Spliethoff, Current status of water electrolysis?for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renew. Sustain. Energy?Rev., 82, 2440-2454 (2018).
H. Lee, B. Lee, M. Byun, and H. Lim, Economic and environmental analysis for PEM water electrolysis based on replacement?moment and renewable electricity resources, Energy Convers.?Manag., 224, 113477 (2020).
M. N. I. Salehmin, T. Husaini, J. Goh, and A. B. Sulong, High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production,?Energy Convers. Manag., 268, 115985 (2022).
M. David, C. Ocampo-Martinez, and R. Sanchez-Pena, Advances?in alkaline water electrolyzers: A review, J. Energy Storage, 23,?392-403 (2019).
D. Henkensmeier, M. Najibah, C. Harms, J. Zitka, J. Hnat, and K.?Bouzek, Overview: state-of-the art commercial membranes for anion?exchange membrane water electrolysis, J. Electrochem. Energy?Convers. Storage, 18, (2021).
IEA (2021), Hydrogen, IEA, Paris Https://Www.Iea.Org/Reports/Hydrogen (n.d.).
F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, and P. Strasser,?Design criteria, operating conditions, and nickel-iron hydroxide?catalyst materials for selective seawater electrolysis, ChemSusChem,?9, 962-972 (2016).
H. K. Abdel-Aal, K. M. Zohdy, and M. A. Kareem, Hydrogen production using sea water electrolysis, Open Fuel Cells J., 3, 1-7?(2010).
R. Balaji, B. S. Kannan, J. Lakshmi, N. Senthil, S. Vasudevan, G.?Sozhan, A. K. Shukla, and S. Ravichandran, An alternative approach to selective sea water oxidation for hydrogen production,?Electrochem. Commun., 11, 1700-1702 (2009).
P. Li, S. Wang, I. A. Samo, X. Zhang, Z. Wang, C. Wang, Y. Li,?Y. Du, Y. Zhong, C. Cheng, W. Xu, X. Liu, Y. Kuang, Z. Lu,?and X. Sun, Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production, Research,?2020, 1-9 (2020).
F. T. Mackenzie, R. H. Byrne, and A. C. Duxbury, Seawater?| Composition, Properties, Distribution, & Facts, Encyclopedia?Britannica, Accessed 5 Oct. 2023, https://www.britannica.com/science/seawater.
Y. Chen and R. Compton, Direct electrochemical analysis in seawater:?evaluation of chloride and bromide detection, Chemosensors, 11,?(2023).
Q. Wang, J. Wu, G. Zhao, Y. Huang, Z. Wang, H. Zheng, Y.?Zhou, Y. Ye, and R. Ghomashchi, Monitor application of multi-electrochemical sensor in extracting bromine from seawater, R.?Soc. Open Sci., 6, (2019).
L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin,?J. Bao, Y. Yu, S. Chen, and Z. Ren, Non-noble metal-nitride based?electrocatalysts for high-performance alkaline seawater electrolysis,?Nat. Commun., 10, 1-10 (2019).
Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, and B. Dong,?Featherlike NiCoP holey nanoarrys for efficient and stable seawater splitting, ACS Appl. Energy Mater., 2, 3910-3917 (2019).
C. Carre, A. Zanibellato, M. Jeannin, R. Sabot, P. Gunkel-Grillon,?and A. Serres, Electrochemical calcareous deposition in seawater.?A review, Environ. Chem. Lett., 18, 1193-1208 (2020).
A. V. Takaloo, M. R. Daroonparvar, M. M. Atabaki, and K.?Mokhtar, Corrosion behavior of heat treated nickel-aluminum?bronze alloy in artificial seawater, Mater. Sci. Appl., 2, 1542-1555?(2011).
J. S. Ko, J. K. Johnson, P. I. Johnson, and Z. Xia, Decoupling?oxygen and chlorine evolution reactions in seawater using iridium-based electrocatalysts, ChemCatChem, 12, 4526-4532 (2020).
S. Wang, M. Wang, Z. Liu, S. Liu, Y. Chen, M. Li, H. Zhang,?Q. Wu, J. Guo, X. Feng, Z. Chen, and Y. Pan, Synergetic function?of the single-atom Ru-N 4 site and Ru nanoparticles for hydrogen?production in a wide pH range and seawater electrolysis, ACS?Appl. Mater. Interfaces, 14, 15250-15258 (2022).
Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao, and S. Z. Qiao, Charge?state manipulation of cobalt selenide catalyst for overall seawater?electrolysis, Adv. Energy Mater., 8, 1-9 (2018).
J. Chang, G. Wang, Z. Yang, B. Li, Q. Wang, R. Kuliiev, N.?Orlovskaya, M. Gu, Y. Du, G. Wang, and Y. Yang, Dual-doping?and synergism toward high-performance seawater electrolysis, Adv.?Mater., 33, 1-10 (2021).
H. J. Song, H. Yoon, B. Ju, D. Y. Lee, and D. W. Kim,?Electrocatalytic selective oxygen evolution of carbon-coated?Na 2 Co 1-x Fe x P 2 O 7 nanoparticles for alkaline seawater electrolysis,?ACS Catal., 10, 702-709 (2020).
L. Wu, L. Yu, B. McElhenny, X. Xing, D. Luo, F. Zhang, J. Bao,?S. Chen, and Z. Ren, Rational design of core-shell-structured?CoPx@FeOOH for efficient seawater electrolysis, Appl. Catal. B?Environ., 294, 120256 (2021).
L. Yang, Y. Zhao, L. Zhu, and D. Xia, Rational construction of?grille structured P-CoZnO-Cu 2 SeS/NF composite electrocatalyst for?boosting seawater electrolysis and corrosion resistance, Appl. Surf.?Sci., 631, 157541 (2023).
L. Yang, D. Lu, L. Zhu, and D. Xia, Construction of Mo doped?CoMoCH-Cu 2 SeS/NF composite electrocatalyst with high catalytic?activity and corrosion resistance in seawater electrolysis: A case?study on cleaner energy, J. Clean. Prod., 413, 137462 (2023).
C. Feng, M. Chen, Y. Zhou, Z. Xie, X. Li, P. Xiaokaiti, Y.?Kansha, A. Abudula, and G. Guan, High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis, J. Colloid?Interface Sci., 645, 724-734 (2023).
S. Song, Y. Wang, X. Tian, F. Sun, X. Liu, Y. Yuan, W. Li, and?J. Zang, S-modified NiFe-phosphate hierarchical hollow microspheres for efficient industrial-level seawater electrolysis, J. Colloid?Interface Sci., 633, 668-678 (2023).
Z. Wang, C. Wang, L. Ye, X. Liu, L. Xin, Y. Yang, L. Wang,?W. Hou, Y. Wen, and T. Zhan, MnO x Film-Coated NiFe-LDH?nanosheets on Ni foam as selective oxygen evolution electrocatalysts for alkaline seawater oxidation, Inorg. Chem., 61, 15256-15265 (2022).
J. Zhu, J. Chi, T. Cui, L. Guo, S. Wu, B. Li, J. Lai, and L. Wang,?F doping and P vacancy engineered FeCoP nanosheets for efficient?and stable seawater electrolysis at large current density, Appl.?Catal. B Environ., 328, 122487 (2023).
Y. Li, X. Wu, J. Wang, H. Wei, S. Zhang, S. Zhu, Z. Li, S. Wu,?H. Jiang, and Y. Liang, Sandwich structured Ni 3 S 2 -MoS 2 -Ni 3 S 2 @Ni foam electrode as a stable bifunctional electrocatalyst for?highly sustained overall seawater splitting, Electrochim. Acta, 390,?138833 (2021).
H. Sun, J. Sun, Y. Song, Y. Zhang, Y. Qiu, M. Sun, X. Tian, C.?Li, Z. Lv, and L. Zhang, Nickel-cobalt hydrogen phosphate on?nickel nitride supported on nickel foam for alkaline seawater electrolysis, ACS Appl. Mater. Interfaces, 14, 22061-22070 (2022).
H. Wang, L. Chen, L. Tan, X. Liu, Y. Wen, W. Hou, and T. Zhan,?Electrodeposition of NiFe-layered double hydroxide layer on sulfurmodified nickel molybdate nanorods for highly efficient seawater?splitting, J. Colloid Interface Sci., 613, 349-358 (2022).
L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S.?Chen, and Z. Ren, Heterogeneous bimetallic phosphide Ni 2 P-Fe 2 P?as an efficient bifunctional catalyst for water/seawater splitting,?Adv. Funct. Mater., 31, 2006484 (2021).
B. Chakraborty, R. Beltran-Suito, V. Hlukhyy, J. Schmidt, P. W.?Menezes, and M. Driess, Crystalline copper selenide as a reliable nonnoble electro(pre)catalyst for overall water splitting, ChemSusChem,?13, 3222-3229 (2020).
H. He, L. Zeng, X. Peng, Z. Liu, D. Wang, B. Yang, Z. Li, L.?Lei, S. Wang, and Y. Hou, Porous cobalt sulfide nanosheets arrays?with low valence copper incorporated for boosting alkaline hydrogen evolution via lattice engineering, Chem. Eng. J., 451, 138628?(2022).
Z. Zhao, J. Sun, and X. Meng, Recent advances in transition metal-based electrocatalysts for seawater electrolysis, Int. J. Energy?Res., 46, 17952-17975 (2022).
Y. Liu, X. Liang, L. Gu, Y. Zhang, G. D. Li, X. Zou, and J. S.?Chen, Corrosion engineering towards efficient oxygen evolution?electrodes with stable catalytic activity for over 6000 hours, Nat.?Commun., 9, 1-10 (2018).
S. Chen, J. Duan, M. Jaroniec, and S. Z. Qiao, Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode?for highly efficient oxygen evolution reaction, Adv. Mater., 26,?2925-2930 (2014).
F. Sun, G. Wang, Y. Ding, C. Wang, B. Yuan, and Y. Lin,?NiFe-based metal-organic framework nanosheets directly supported?on nickel foam acting as robust electrodes for electrochemical oxygen evolution Reaction, Adv. Energy Mater., 8, 1-11 (2018).
F. Dionigi and P. Strasser, NiFe-based (oxy)hydroxide catalysts for?oxygen evolution reaction in non-acidic electrolytes, Adv. Energy?Mater., 6, 1600621 (2016).
A. B. Laursen, A. S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O.?L. Trinhammer, J. Rossmeisl, and S. Dahl, Electrochemical hydrogen evolution: Sabatiers principle and the volcano plot, J. Chem.?Educ., 89, 1595-1599 (2012).
A. Lam, H. Li, S. Zhang, H. Wang, D. P. Wilkinson, S. Wessel,?and T. T. H. Cheng, Ex situ study of chloride contamination on?carbon supported Pt catalyst, J. Power Sources, 205, 235-238?(2012).
W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y.?P. Feng, J. Wang, and S. J. Pennycook, Efficient hydrogen evolution of oxidized Ni-N 3 defective sites for alkaline freshwater and?seawater electrolysis, Adv. Mater., 33, 1-8 (2021).
L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang, S. Chen, and?Z. Ren, Hydrogen generation from seawater electrolysis over a?sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst, ACS?Energy Lett., 5, 2681-2689 (2020).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.