[국내논문]무화과(Ficus carica L.) 열매 추출물의 tyrosinase 및 MITF 발현 억제를 통한 미백 활성 Whitening activity of Ficus carica L. fruits extract through inhibition of tyrosinase and MITF expression원문보기
미백은 멜라닌 세포 내 멜라닌 생성 억제 기능을 의미한다. 기존 미백소재의 피부 부작용 때문에 최근에는 천연 소재를 활용한 미백 연구가 활발히 진행되고 있다. 무화과(Ficus Carica L.)는 뽕나무과에 속하는 열매로 줄기와 잎 성분의 미백 활성은 보고되었으나 무화과 열매의 미백 활성은 알려지지 않아 본 연구를 통해 멜라닌 생성 억제, 항산화 및 항염증 활성을 규명하고자 하였다. 무화과 열매 추출물(Figs fruits extract, FFE)의 라디칼 소거 활성은 DPPH/ABTS 분석에서 최대 농도에서 대조군 대비 34.52±1.98%/60.71±1.26% 수준으로 관찰되었다. CCK-8 assay를 통한 FFE의 세포독성은 약 10% 농도부터 관찰 되어 독성이 없는 최대 농도를 5%로 설정하여 모든 실험에 적용하였다. FFE는 inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 및 tumor necrosis factor-α 유전자 발현 억제와 함께 NO 생성을 농도 의존적으로 감소시켜 항염증 활성이 있음을 알 수 있었다. 또한 미백 기능 규명을 위해 α-MSH로 자극된 B16F10 세포에서 FFE를 농도별로 처리한 결과 세포 내 멜라닌 생성을 유의하게 하향 조절했을 뿐만 아니라 시험관 내에서 tyrosinase 활성이 억제되었다. 또한 FFE는 RT-PCR에서 α-MSH 처리군에 비해 Microphthalmia-associated transcription factor (MITF)mRNA 발현을 약 94.34% 감소시켰다. 마지막으로, FFE는 α-MSH로 자극된 B16F10 세포에서 MITF, cAMP response element-binding protein 및 tyrosinase 단백질 발현을 유의하게 감소시켰다. 이러한 결과를 통해 우리는 FFE가 tyrosinase 효소 활성을 직접적으로 억제할 수 있을 뿐만 아니라 α-MSH 신호 기전 내 MITF 유전자 발현 조절을 통해 멜라닌 생성을 억제할 수 있음을 확인하였다.
미백은 멜라닌 세포 내 멜라닌 생성 억제 기능을 의미한다. 기존 미백소재의 피부 부작용 때문에 최근에는 천연 소재를 활용한 미백 연구가 활발히 진행되고 있다. 무화과(Ficus Carica L.)는 뽕나무과에 속하는 열매로 줄기와 잎 성분의 미백 활성은 보고되었으나 무화과 열매의 미백 활성은 알려지지 않아 본 연구를 통해 멜라닌 생성 억제, 항산화 및 항염증 활성을 규명하고자 하였다. 무화과 열매 추출물(Figs fruits extract, FFE)의 라디칼 소거 활성은 DPPH/ABTS 분석에서 최대 농도에서 대조군 대비 34.52±1.98%/60.71±1.26% 수준으로 관찰되었다. CCK-8 assay를 통한 FFE의 세포독성은 약 10% 농도부터 관찰 되어 독성이 없는 최대 농도를 5%로 설정하여 모든 실험에 적용하였다. FFE는 inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 및 tumor necrosis factor-α 유전자 발현 억제와 함께 NO 생성을 농도 의존적으로 감소시켜 항염증 활성이 있음을 알 수 있었다. 또한 미백 기능 규명을 위해 α-MSH로 자극된 B16F10 세포에서 FFE를 농도별로 처리한 결과 세포 내 멜라닌 생성을 유의하게 하향 조절했을 뿐만 아니라 시험관 내에서 tyrosinase 활성이 억제되었다. 또한 FFE는 RT-PCR에서 α-MSH 처리군에 비해 Microphthalmia-associated transcription factor (MITF) mRNA 발현을 약 94.34% 감소시켰다. 마지막으로, FFE는 α-MSH로 자극된 B16F10 세포에서 MITF, cAMP response element-binding protein 및 tyrosinase 단백질 발현을 유의하게 감소시켰다. 이러한 결과를 통해 우리는 FFE가 tyrosinase 효소 활성을 직접적으로 억제할 수 있을 뿐만 아니라 α-MSH 신호 기전 내 MITF 유전자 발현 조절을 통해 멜라닌 생성을 억제할 수 있음을 확인하였다.
Whitening is inhibitory activity of the melanin synthesis of melanocytes. Recently, whitening materials have been developed on natural materials because of its side effects on skin. Figs (Ficus Carica L.) is a fruit belonging to the Moraceae family and whitening activity was reported in focusing on ...
Whitening is inhibitory activity of the melanin synthesis of melanocytes. Recently, whitening materials have been developed on natural materials because of its side effects on skin. Figs (Ficus Carica L.) is a fruit belonging to the Moraceae family and whitening activity was reported in focusing on the fig's stem and leaf components, but whitening activity of the figs fruit was not known. Thus, in this study, we tried to observe its anti-melanogenesis as well as antioxidant and anti-inflammation. The radical scavenging activity of figs fruits extract (FFE) was observed as the level of 34.52±1.98%/60.71±1.26% compared to the control in the its maximum concentration in the DPPH/ABTS assay. Cytotoxicity of FFE was observed at 10% concentration by CCK8 assay, so the maximum concentration was set at 5% and applied to all experiments. FFE concentration dependently decreased NO production associated with inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-α gene expression, these strongly suggesting anti-inflammatory activity. In melanin contents assay, FFE significantly down-regulated melanin production in α-MSH-stimulated B16F10 cell as well as tyrosinase inhibition in vitro. In addition, FFE decreased the Microphthalmia-associated transcription factor (MITF) mRNA expression about 94.34% compared to the α-MSH treatment group in RT-PCR. Finally, FFE significantly reduced the MITF, cAMP response element-binding protein and tyrosinase protein expression in the α-MSH stimulated B16F10 cell. Through these results, we found that FFE can not only directly inhibit tyrosinase enzyme activity but also suppress melanogenesis through regulation of MITF gene expression in α-MSH signal transduction.
Whitening is inhibitory activity of the melanin synthesis of melanocytes. Recently, whitening materials have been developed on natural materials because of its side effects on skin. Figs (Ficus Carica L.) is a fruit belonging to the Moraceae family and whitening activity was reported in focusing on the fig's stem and leaf components, but whitening activity of the figs fruit was not known. Thus, in this study, we tried to observe its anti-melanogenesis as well as antioxidant and anti-inflammation. The radical scavenging activity of figs fruits extract (FFE) was observed as the level of 34.52±1.98%/60.71±1.26% compared to the control in the its maximum concentration in the DPPH/ABTS assay. Cytotoxicity of FFE was observed at 10% concentration by CCK8 assay, so the maximum concentration was set at 5% and applied to all experiments. FFE concentration dependently decreased NO production associated with inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-α gene expression, these strongly suggesting anti-inflammatory activity. In melanin contents assay, FFE significantly down-regulated melanin production in α-MSH-stimulated B16F10 cell as well as tyrosinase inhibition in vitro. In addition, FFE decreased the Microphthalmia-associated transcription factor (MITF) mRNA expression about 94.34% compared to the α-MSH treatment group in RT-PCR. Finally, FFE significantly reduced the MITF, cAMP response element-binding protein and tyrosinase protein expression in the α-MSH stimulated B16F10 cell. Through these results, we found that FFE can not only directly inhibit tyrosinase enzyme activity but also suppress melanogenesis through regulation of MITF gene expression in α-MSH signal transduction.
Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R?(2012) Structure and function of the epidermis related to barrier?properties. Clin Dermatol 30: 257-262. doi: 10.1016/j.cindermatol.2011.08.007
Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable?barrier. Exp Dermatol 17: 1063-1072. doi: 10.1111/j.1600-0625.2008.00786
Choi DH, Kim MR, Kim MY, Kim HH, Park SY, Hwang HS (2019)?Studies on Antioxidant, Anti-inflammatory and Whitening Effects of?Oriental Herbal Extracts (Mix) including Eucommiae cortex. J Soc?Cosmet Scientists Korea, 45: 37-47. doi: 10.15230/SCSK.2019.45.1.37
Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ,?Hauschildt S (2011) LPS-induced cytokine production in human?monocytes and macrophages. Crit Rev Immunol 31: 379-446. doi: 10.1615/critrevimmunol.v31.i5.20
Kim SJ, Kim TJ, Kim EH, Kim YM (2020) Anti-inflammatory and?Anti-oxidant Studies of Osung-tang Extracts in LPS-Induced RAW?264.7 Cells. J Korean Med Ophthalmol Otolaryngol Dermatol 33: 1-11.?doi: 10.6114/jkood.2020.33.1.001
Lai JL, Liu YH, Liu C, Qi MP, Liu RN, Zhu XF, Zhou QG, Chen YY,?Guo AZ, Hu CM (2017) Indirubin inhibits LPS-induced inflammation?via TLR4 abrogation mediated by the NF-κB and MAPK signaling?pathways. Inflammation 40: 1-12. doi: 10.1007/s10753-016-0447-7
Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination:?the control of NF-κB activity. Annu Rev Immunol 18: 621-663. doi: 10.1146/annurev.immunol.18.1.621
Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase?pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:?1911-1912. doi: 10.1126/science.1072682
Brenner M, Hearing VJ (2008) The protective role of melanin against?UV damage in human skin. Photochem Photobiol 84: 539-549. doi: 10.1111/j.1751-1097.2007.00226.x
Murase D, Hachiya A, Amano Y, Ohuchi A, Kitahara T, Takema Y?(2009) The essential role of p53 in hyperpigmentation of the skin via?regulation of paracrine melanogenic cytokine receptor signaling. J Biol?Chem 284: 4343-4353. doi: 10.1074/jbc.M805570200
Vachtenheim J, Borovansky J (2010) "Transcription physiology" of?pigment formation in melanocytes: central role of MITF. Exp Dermatol?19: 617-627. doi: 10.1111/j.1600-0625.2009.01053.x
Kim HJ, Seo SH, Lee BG, Lee YS (2005) Identification of tyrosinase?inhibitors from Glycyrrhiza uralensis. Planta Med 71: 785-787. doi: 10.1055/s-2005-871232
Van Den Bossche K, Naeyaert JM, Lambert J (2006) The Quest for the?Mechanism of Melanin Transfer. Traffic, 7: 769-778. doi: 10.1111/j.1600-0854.2006.00425.x
Choi DH, Jeon GC, Yoon JH, Min JH, Park SJ, Kim JS, Hwang HS?(2019) Study on the Whitening Efficacy and Skin Barrier by Lysosome-related Organelle Extract (LOE) from Egg White. J Soc Cosmet?Scientists Korea 45: 389-397. doi: 10.3839/jabc.2022.013
Cho JH, Kim JH, Eom SA, Kang MJ, Han YS, Hur MJ (2019)?Investigation on the Safety of Hydroquinone and Preservatives among?Whitening Functional Cosmetics Containing Albutin in Korea. J Soc?Cosmet Scientists Korea, 45: 399-408. doi: 10.15230/SCSK.2019.45.4.399
Hong SH, Park BR, Lee SB (2018) Preparation of Cosmeceuticals?Containing Broussonetia kazinoki Extracts: Optimization Using Central?Composite Design Method. Appl Chem Eng 6: 682-689. doi: 10.14478/ace.2018.1071
Inoue Y, Hasegawa S, Yamada T, Date Y, Mizutani H, Nakata S,?Matsunaga K, Akamatsu H (2013) Analysis of the effects of?hydroquinone and arbutin on the differentiation of melanocytes. Biol?Pharm Bull 36: 1722-1730. doi: 10.1248/bpb.b13-00206
Wang W, Gao Y, Wang W, Zhang J, Yin J, Le T, Xue J, Engelhardt UH,?Jiang H (2022) Kojic Acid Showed Consistent Inhibitory Activity on?Tyrosinase from Mushroom and in Cultured B16F10 Cells Compared with Arbutins. Antioxidants (Basel) 11: 502. doi: 10.3390/antiox11030502
Jeong HL, Kim HW, Kim JH, Kim JH, Kim DU (2012) Cosmetic effect?of mixed plant extracts including Saururus Chinensis, Morus Bombycis?stem and Morus Papyrifera stem. Korean Chem Eng Res 50: 610-613.?doi: 10.9713/kcer.2012.50.4.610
Barolo MI, Ruiz Mostacero N, Lopez SN (2014) Ficus carica L.?(Moraceae): An ancient source of food and health. Food Chem 164:?119-127. doi: 10.1016/j.foodchem.2014.04.112
Kebal L, Pokajewicz K, Djebli N, Mostefa N, Poliwoda A, Wieczorek?PP (2022) HPLC-DAD profile of phenolic compounds and in vitro?antioxidant activity of Ficus carica L. fruits from two Algerian varieties.?Biomed Pharmacother 155: 113738. doi: 10.1016/j.biopha.2022.113738
Arvaniti OS, Samaras Y, Gatidou G, Thomaidis NS, Stasinakis AS?(2019) Review on fresh and dried figs: Chemical analysis and?occurrence of phytochemical compounds, antioxidant capacity and?health effects. Food Res Int 119: 244-267. doi: 10.1016/j.foodres.2019.01.055
Cho UM, Choi DH, Yoo DS, Park SJ, Hwang HS (2019) Inhibitory?Effect of Ficin Derived from Fig Latex on Inflammation and Melanin?Production in Skin Cells. Biotechnol Bioproc E 24: 288-297. doi: 10.1007/s12257-019-0010-0
Ali B, Mujeeb M, Aeri V, Mir SR, Faiyazuddin M, Shakeel F (2012)?Anti-inflammatory and antioxidant activity of Ficus carica Linn. Leaves.?Nat Prod Res 26: 460-465. doi: 10.1080/14786419.2010.488236
Cha HJ, Kim JH (2020) Ficus carica leaf extract decreases?melanogenesis in B16F10 mouse melanoma cells. Int J Clin Exp Med 7:?4954-4959
Lee HN, Shin SA, Choo GS, Kim HJ, Park YS, Kim BS, Kim SK, Cho?SD, Nam JS, Choi CS, Che JH, Park BK, Jung JY (2017) Anti-inflammatory effect of quercetin and galangin in LPS-stimulated?RAW264.7 macrophages and DNCB-induced atopic dermatitis animal?models. Int J Mol Med 41(2): 888-898. doi: 10.3892/ijmm.2017.3296
Ahn HY, Heo SJ, Kang MJ, Lee JH, Cha JY, Cho YS (2011)?Antioxidative activity and chemical characteristics of leaf and fruit?extracts from Thuja orientalis. J Life Sci 21(5): 746-752. doi: 10.5352/jls.2011.21.5.746
Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, Bhadra R?(2006) Activation of the MITF promoter by lipid-stimulated activation of?p38-stress signaling to CREB. Pigment Cell Res 19: 595-605. doi: 10.1111/j.1600-0749.2006.00348.x
※ AI-Helper는 부적절한 답변을 할 수 있습니다.