$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 연료전지용 MXenes의 등장
Emergence of MXenes for Fuel Cell 원문보기

공업화학 = Applied chemistry for engineering, v.34 no.2, 2023년, pp.99 - 105  

마노즈 카라코티 (경상대학교 그린에너지융합기술연구소) ,  남상용 (경상대학교 그린에너지융합기술연구소)

Abstract AI-Helper 아이콘AI-Helper

Recently, 2D materials greatly impact in the various applications especially in the energy conversion and storage devices. Among the 2D materials, nowadays researchers are showing their propensity towards the MXenes due to their potential structural and physical properties as well as their use in va...

주제어

표/그림 (4)

참고문헌 (65)

  1. TRVST, https://www.trvst.world/renewable-energy/challenges-for-renewable-energy/, 12, Nov 2022. 

  2. C. Fan, P. Zhang, R. Wang, Y. Xu, X. Sun, J. Zhang, J. Cheng, and C. Xu, Applications of two dimensional material-mxene for proton exchange membrane fuel cells (PEMFCs) and water electrolysis, Curr. Nanosci., 17, 2-13 (2021). 

  3. B. C. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345-352 (2001). 

  4. M. Wang, M. Chen, Z. Yang, G. Liu, J. K. Lee, W. Yang, and X. Wang, High-performance and durable cathode catalyst layer with hydrophobic C@ PTFE particles for low-Pt loading membrane assembly electrode of PEMFC, Energy Convers. Manage., 191, 132-140 (2019). 

  5. F. M. Guangul, and G. T. Chala, A comparative study between the seven types of fuel cells, Appl. Sci. Eng. Prog., 13, 185-194 (2020). 

  6. G. He, Z. Li, J. Zhao, S. Wang, H. Wu, M. D. Guiver, and Z. Jiang, Nanostructured ion-exchange membranes for fuel cells: Recent advances and perspectives, Adv. Mater., 27, 5280-5295 (2015). 

  7. M. Z. Jacobson, W. G. Colella, and D. M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science, 308, 1901-1905 (2005). 

  8. S. M. Haile; D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, Solid acids as fuel cell electrolytes, Nature, 410, 910-913 (2001). 

  9. M. R. Berber, M. S. Ismail, M. Pourkashanian, M. B. Zakaria Hegazy, and U. P. Apfel, Promising Membrane for polymer electrolyte fuel cells shows remarkable proton conduction over wide temperature and humidity ranges, ACS Appl. Polym. Mater., 3, 4275-4286 (2021). 

  10. G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Prog. Polym. Sci., 36, 1521-1557 (2011). 

  11. Z. Sun and B. Lin, Applied Polymer MaterialsF. Yan, Anion-exchange membranes for alkaline fuel-cell applications: The effects of cations, ChemSusChem, 11, 58-70 (2018). 

  12. M. Adamski, N. Peressin, and S. Holdcroft, On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells, Mater. Adv., 2, 4966-5005 (2021). 

  13. M. Sugumar, V. Kugarajah, and S. Dharmalingam, Optimization of operational factors using statistical design and analysis of nanofiller incorporated polymer electrolyte membrane towards performance enhancement of microbial fuel cell, Process Saf. Environ., 158, 474-485 (2022). 

  14. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes, Compos. B Eng., 164, 324-332 (2019). 

  15. R. Narducci, E. Sgreccia, P. Knauth, and M. L. Di Vona, Anion exchange membranes with 1D, 2D and 3D fillers: A review. Polymers, 13, 3887 (2021). 

  16. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Liquid exfoliation of layered materials, Science, 340, 1226419 (2013). 

  17. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768-779 (2014). 

  18. Y. Chen, H. Yang, Z. Han, Z. Bo, J. Yan, K. Cen, and K. K. Ostrikov, MXene-based electrodes for supercapacitor energy storage, Energy Fuels, 36, 2390-2406 (2022). 

  19. F. Ming, H. Liang, G. Huang, Z. Bayhan, and H. N. Alshareef, MXenes for rechargeable batteries beyond the lithium-ion, Adv. Mater., 33, 2004039 (2021). 

  20. L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia, Q. Liu, J. Li, Y. Li, and D. He, MXenes for solar cells, Nanomicro Lett., 13, 1-17 (2021). 

  21. Z. Yang, M. Zhang, Z. Zhao, W. Lan, X. Zhang, and M. Fan, Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: Improving ionic conductivity and power density, Int. J. Hydrog. Energy, 47, 18122-18138 (2022). 

  22. L. Chen, X. Dai, W. Feng, and Y. Chen, Biomedical applications of MXenes: From nanomedicine to biomaterials. AMR, 3, 785-798 (2022). 

  23. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti 3 AlC 2 . Adv. Mater., 23, 4248-4253 (2011). 

  24. Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang, L. Xia, S. Ma, Z. Yin, R. Wang, Y. Cao, and Z. Li, The recent progress of MXene-Based microwave absorption materials, Carbon, 174, 484- 499 (2021). 

  25. S. Bae, Y. G. Kang, M. Khazaei, K. Ohno, Y. H. Kim, M. J. Han, K. J. Chang, and H. Raebiger, Electronic and magnetic properties of carbide MXenes - the role of electron correlations, Mater. Today Adv., 9, 100118 (2021). 

  26. S. Kim, F. Gholamirad, M. Yu, C. M. Park, A. Jang, M. Jang, N. Taheri-Qazvini, and Y. Yoon, Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti 3 C 2 T X MXene, Chem. Eng. J., 406, 126789 (2021). 

  27. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A new family of two-dimensional materials, Adv. Mater., 2, 992-1005 (2014). 

  28. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides. ACS Nano, 6, 1322-1331 (2012). 

  29. A. D. Dillon, M. J. Ghidiu, A. L. Krick, J. Griggs, S. J. May, Y. Gogotsi, M. W. Barsoum, and A. T. Fafarman. Highly conductive optical quality solution-processed films of 2D titanium carbide, Adv. Funct. Mater., 26, 4162-4168 (2016). 

  30. J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. Han, W. Yang, and J. Liu, Scalable Manufacturing of Free Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity, Adv. Mater., 32, 2001093 (2020). 

  31. Y. Fan, L. Li, Y. Zhang, X. Zhang, D. Geng, and W. Hu, Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals, Adv. Funct. Mater., 32, 2111357 (2022). 

  32. M. W. Barsoum, The MN+ 1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem., 28, 201-281 (2000). 

  33. K. Hideo, K. Tsuzura, and H. Shimizu, Ion exchange membranes, in: K. Dorfner (Ed.), Ion Exchangers, Walter de Gruyter, Berlin (1991). 

  34. H. Strathmann, Electrodialysis and related processes. In: R. D. Noble and S. A. Stern (ed.). Membrane Science and Technology, 2, 213-281, Elsevier, Amsterdam, Netherlands (1995). 

  35. C. Felice and D. Qu, Optimization of the synthesis of Nafion-montmorillonite nanocomposite membranes for fuel cell applications through statistical design-of-experiment, Ind. Eng. Chem. Res., 50, 721-727 (2011). 

  36. B. Smitha, S. Sridhar, and A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications-A review, J. Membr. Sci., 259, 10-26 (2005). 

  37. D.J. Kim, M. J. Jo, and S. Y. Nam, A review of polymer-nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36-52 (2015). 

  38. B. P. Tripathi and V. K. Shahi, Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci., 36, 945-979 (2011). 

  39. H. Ahmad, S. K. Kamarudin, U. A. Hasran, and W. W. Daud, Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrog. Energy, 35, 2160-2175 (2010). 

  40. R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moon,. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations. J. Power Sources, 179, 458-466 (2008). 

  41. B. P. Tripathi and V. K. Shahi, Surface redox polymerized SPEEK-MO2-PANI (M Si, Zr and Ti) composite polyelectrolyte membranes impervious to methanol, Colloids Surf. A Physicochem. Eng. Asp., 340, 10-19 (2009). 

  42. P. Krishnan, J. S. Park, and C. S. Kim, Preparation of proton-conducting sulfonated poly (ether ether ketone)/boron phosphate composite membranes by an in situ sol-gel process, J. Membr. Sci., 279, 220-229 (2006). 

  43. R. Kannan, P. P. Aher, T. Palaniselvam, S. Kurungot, U. K. Kharul, and V. K. Pillai, Artificially designed membranes using phosphonated multiwall carbon nanotube- polybenzimidazole composites for polymer electrolyte fuel cells, J. Phys. Chem. Lett., 1, 2109-2113 (2010). 

  44. M. Helen, B. Viswanathan, and S. S. Murthy, Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol, J. Power Sources, 163, 433-439 (2006). 

  45. A. F. Ismail, N. H. Othman, and A. Mustafa, Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica-aluminium oxide for direct methanol fuel cell (DMFC), J. Membr. Sci., 329, 18-29 (2009). 

  46. R. Gosalawit, S. Chirachanchai, S. Shishatskiy, and S. P. Nunes, Sulfonated montmorillonite/sulfonated poly (ether etherketone)(SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs), J. Membr. Sci., 323, 337-346 (2008). 

  47. A. Boretti and S. Castelletto, MXenes in polymer electrolyte membrane hydrogen fuel and electrolyzer cells, Ceramics Int., 48, 34190-34198 (2022). 

  48. Z. Zeng, R. Song, S. Zhang, X. Han, Z. Zhu, X. Chen, and L. Wang, Biomimetic N-doped graphene membrane for proton exchange membranes, Nano Lett., 21, 4314-4319 (2021). 

  49. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, Advanced materials for improved PEMFC performance and life, J. Power Sources, 131, 41-48 (2004). 

  50. C. Zhou, M. A. Guerra, Z. M. Qiu, T. A. Zawodzinski, and D. A. Schiraldi, Chemical durability studies of perfluorinated sulfonic acid polymers and model compounds under mimic fuel cell conditions, Macromolecules, 40, 8695-8707 (2007). 

  51. M. Danilczuk, F. D. Coms, and S. Schlick, Fragmentation of Fluorinated Model Compounds Exposed to Oxygen Radicals: Spin Trapping ESR Experiments and Implications for the Behaviour of Proton Exchange Membranes Used in Fuel Cells, Fuel Cells, 8, 436-452 (2008). 

  52. L. Gubler, H. Kuhn, T. J. Schmidt, G. G. Scherer, H. P. Brack, and K. Simbeck, Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes, Fuel Cells, 4, 196-207 (2004). 

  53. M. P. Rodgers, L. J. Bonville, H. R. Kunz, D. K. Slattery, and J. M. Fenton, Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime, Chem. Rev., 112, 6075-6103 (2012). 

  54. A. Panchenko,H. Dilger, J. Kerres, M. Hein, A. Ullrich, T. Kaz, and E. Roduner, In-situ spin trap electron paramagnetic resonance study of fuel cell processes, Phys. Chem. Chem. Phys., 6, 2891-2894 (2004). 

  55. S. Zhao, R. Wang, T. Tian, H. Liu, H. Zhang, and H. Tang, Self-assembly-cooperating in situ construction of MXene-CeO 2 as hybrid membrane coating for durable and high-performance proton exchange membrane fuel cell, ACS Sustain. Chem. Eng., 10, 4269-4278 (2022). 

  56. A. Al-Othman, M. F. Hassan, M. Tawalbeh, and A. Ka'ki, Proton conductivity studies in zirconium phosphate/MXenes in PEM fuel cells, Advances in Science and Engineering Technology International Conferences (ASET), IEEE, February 2022, 1-5. 

  57. J. Zhang, Y. Liu, Z. Lv, T. Zhao, P. Li, Y. Sun, and J. Wang, Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction, Solid State Ion., 310, 100-111 (2017). 

  58. Y. Liu, J. Zhang, X. Zhang, Y. Li, and J. Wang, Ti 3 C 2 T x filler effect on the proton conduction property of polymer electrolyte membrane, ACS Appl. Mater. Interfaces, 8, 20352-20363 (2016). 

  59. J. R. Varcoe and R. C. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells, 5, 187-200 (2005). 

  60. M. Hren, M. Bozic, D. Fakin, K. S. Kleinschek and S. Gorgieva, Alkaline membrane fuel cells: Anion exchange membranes and fuels, Sustain. Energy Fuels, 5, 604-637 (2021). 

  61. W. E. Mustain, M. Chatenet, M. Page, and Y. S. Kim, Durability challenges of anion exchange membrane fuel cells, Energy Environ. Sci., 13, 2805-2838 (2020). 

  62. R. Narducci, E. Sgreccia, P. Knauth, and M. L. Di Vona, Anion exchange membranes with 1D, 2D and 3D Fillers: A review, Polymers, 13, 3887 (2021). 

  63. Z. Yang, M. Zhang, Z. Zhao, W. Lan, X. Zhang, and M. Fan, Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: Improving ionic conductivity and power density, Int. J. Hydrog. Energy, 47, 18122-18138 (2022). 

  64. X. Zhang, C. Fan, N. Yao, P. Zhang, T. Hong, C. Xu, and J. Cheng, Quaternary Ti 3 C 2 T x enhanced ionic conduction in quaternizedpolysulfone membrane for alkaline anion exchange membrane fuel cells, J. Membr. Sci., 563, 882-887 (2018). 

  65. L. Wang and B. Shi, Hydroxide conduction enhancement of chitosan membranes by functionalized MXene, Materials, 11, 2335 (2018). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로