$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Exploring the Properties and Potential of Single-crystal NCM 811 for Lithium-ion Batteries 원문보기

Corrosion science and technology, v.22 no.1, 2023년, pp.36 - 43  

Seunghoon Nam (Department of Materials Science and Engineering, College of Engineering, Andong National University) ,  Yongseok Lee (Department of Materials Science and Engineering, College of Engineering, Andong National University)

Abstract AI-Helper 아이콘AI-Helper

Single-crystal Ni-rich NCM is a material that has drawn attention in the field of lithium-ion batteries due to its high energy density and long cycle life. In this study, we investigated the properties of single-crystal NCM 811 and its potential for use in lithium-ion batteries. High-quality single ...

주제어

표/그림 (7)

참고문헌 (28)

  1. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, and B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, Journal of Energy Chemistry, 59, 83 (2021). Doi: https://doi.org/10.1016/j.jechem.2020.10.017 

  2. S. J. Hong, and S. Nam, Simple Synthesis of SiO x by HighEnergy Ball Milling as a Promising Anode Material for Li-Ion Batteries, Corrosion Science and Technology, 21, 445 (2022). Doi: https://doi.org/10.14773/cst.2022.21.6.445 

  3. B. Song, W. Li, and A. Manthiram, A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries, Energy Storage Matererials, 6, 125 (2017). Doi: https://doi.org/10.1016/j.ensm.2016.10.007 

  4. M. S. Whittngham, Lithium batteries and cathode materials, Chemical Reviews, 104, 4271 (2004). Doi: https://doi.org/10.1021/cr020731c 

  5. D. Andre, S. Kim, P. Lamp, S. F. Lux, F. Maglia, O. Paschos, and B. Stiaszny, Future generation of cathode materials: an automotive industry perspective, Journal of Materials Chemistry A, 3, 6709 (2015). Doi: https:// doi.org/10.1039/C5TA00361J 

  6. R. V. Chebiam, A. M. Kannan, F. Prado, and A. Manthiram, Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries, Electro-chemistry Communications, 3, 624 (2001). Doi: https://doi.org/10.1016/S1388-2481(01)00232-6 

  7. A. Manthiram, B. Song, and W. Li, A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries, Energy Storage Materials, 6, 125 (2017). Doi: https://doi.org/10.1016/j.ensm.2016.10.007 

  8. M. Zhang, D. A. Kitchaev, Z. Lebens-Higgins, J. Vinckeviciute, M. Zuba, P. J. Reeves, C. P. Grey, Michael Stanley Whittingham, Louis F. J. Piper, Anton Van der Ven, and Y. Shirley Meng, Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage, Nature Reviews Materials, 7, 522 (2022). Doi: https://doi.org/10.1038/s41578-022-00416-1 

  9. N. Nitta, F. Wu, J. T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18, 5 (2015). Doi: https://doi.org/10.1016/j.mattod.2014.10.040 

  10. S.-H. Lee, S. Lee, B.-S. Jin & H.-S. Kim, Optimized electrochemical performance of Ni rich LiNi 0.91 Co 0.06 Mn 0.03 O 2 cathodes for high-energy lithium ion batteries, Scientific Reports, 9, 8901 (2019). Doi: https://doi.org/10.1038/ s41598-019-45531-2 

  11. S. Jamil, G. Wang, M. Fasehullah, M. Xu, Challenges and prospects of nickel-rich layered oxide cathode material, Journal of Alloys and Compounds, 909, 164727 (2022). Doi: https://doi.org/10.1016/j.jallcom.2022.164727 

  12. A. Chen, K. Wang, J. Li, Q. Mao, Z. Xiao, D. Zhu, G. Wang, P. Liao, J. He, Y. You, and Y. Xia, The Formation, Detriment and Solution of Residual Lithium Compounds on Ni-Rich Layered Oxides in Lithium-Ion Batteries, Frontiers in Energy Research, 8 (2020). Doi: https://doi.org/10.3389/fenrg.2020.593009 

  13. H.-H. Ryu, K.-J. Park, C. S. Yoon, and Y.-K. Sun, Capacity Fading of Ni-Rich Li[Ni x Co y Mn 1-x-y ]O 2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation?, Chemistry of Materials, 30, 1155 (2018). Doi: https://doi.org/10.1021/acs.chemmater.7b05269 

  14. J.-H. Kim, H.-H. Ryu, S. J. Kim, C. S. Yoon, and Y.-K. Sun, Degradation Mechanism of Highly Ni-Rich Li[Ni x Co y Mn 1-x-y ]O 2 Cathodes with x > 0.9, ACS Applied Materials & Interfaces, 11, 30936 (2019). Doi: https://doi.org/10.1021/acsami.9b09754 

  15. H.-H. Sun, and A. Manthiram, Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni 0.9 Co 0.005 ]O 2 Cathode for Lithium-Ion Batteries, Chemistry of Materials, 29, 8486 (2017). Doi: https://doi.org/10.1021/acs.chemmater.7b03268 

  16. C. Liao, F. Li, and J. Liu, Challenges and Modification Strategies of Ni-Rich Cathode Materials Operating at High-Voltage, Nanomaterials, 12, 1888 (2022). Doi: https://doi.org/10.3390/nano12111888 

  17. Y. Liang, H. Liu, G. Wang, C. Wang, Y. Ni, C.-W. Nan, L.-Z. Fan, Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solidstate lithium batteries, InfoMat, 4, 5 (2022). Doi: https:// doi.org/10.1002/inf2.12292 

  18. X. Fan, G. Hu, B. Zhang, X. Ou, J. Zhang, W. Zhao, H. Jia, L. Zou, P. Li, Y. Yang, Crack-free single-crystalline Nirich layered NCM cathode enable superior cycling performance of lithium-ion batteries, Nano Energy, 70, 104450 (2020). Doi: https://doi.org/10.1016/j.nanoen.2020.104450 

  19. S.-T. Myung, F. Maglia, K.-J. Park, C. S. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives, ACS Energy Letters, 2, 196 (2016). Doi: https://doi.org/10.1021/acsenergylett.6b00594 

  20. T. Kimijima, N. Zettsu, and K. Teshima, Growth Manner of Octahedral-Shaped Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 Single Crystals in Molten Na 2 SO 4 , Crystal Growth & Design, 16, 2618 (2016). Doi: https://doi.org/10.1021/acs.cgd.5b01723 

  21. J. Zhu and G. Chen, Single-Crystal Based Studies for Correlating Properties and High-Voltage Performance of Li[Ni x Mn y Co 1-x-y ]O 2 Cathodes, Journal of Materials Chemistry A, 7, 5463 (2019). Doi: https://doi.org/10.1039/C8TA10329A 

  22. M.-H. Lee, Y.-J. Kang, S.-T. Myung, Y.-K. Sun, Synthetic optimization of Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 via co-precipitation, Electrochimica Acta, 50, 939 (2004). Doi: https://doi.org/10.1016/j.electacta.2004.07.038 

  23. Y. Kim, Lithium Nickel Cobalt Manganese Oxide Synthesized Using Alkali Chloride Flux : Morphology and Performance As a Cathode Material for Lithium Ion Batteries, ACS Applied Materials & Interfaces, 4, 2329 (2012). Doi: https://doi.org/10.1021/am300386j 

  24. H. Zhu, Y. Tang, K. M. Wiaderek, O. J. Borkiewicz, Y. Ren, J. Zhang, J. Ren, L. Fan, C. C. Li, D. Li, X.-L. Wang, and Q. Liu, Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM Cathode, Nano Letters, 21, 9997 (2021). Doi: https://doi.org/10.1021/acs.nanolett.1c03613 

  25. C. Xu, P. J. Reeves, Q. Jacquet, and C. P. Grey, Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries, Advanced Energy Materials, 11, 2003404 (2020). Doi: https://doi.org/10.1002/aenm.202003404 

  26. R. S. Negi, S. P. Culver, M. Wiche, S. Ahmed, K. Volz and M. T. Elm, Optimized atomic layer deposition of homogeneous, conductive Al 2 O 3 coatings for high-nickel NCM containing ready-to-use electrodes, Physical Chemistry and Chemical Physics, 23, 6725 (2021). Doi: https://doi.org/10.1039/D0CP06422J 

  27. B. Zhang, L. Cheng, P. Deng, Z. Xiao, L. Ming, Y. Zhao, B. Xu, J. Zhang, B. Wu, and X. Ou, Effects of transition metal doping on electrochemical properties of singlecrystalline LiNi 0.7 Co 0.1 Mn 0.2 O 2 cathode materials for lithium-ion batteries, Journal of Alloys and Compounds, 872, 159619 (2021). Doi: https://doi.org/10.1016/j.jallcom.2021.159619 

  28. G.-T. Park, H.-H. Ryu, T.-C. Noh, G.-C. Kang, and Y.-K. Sun, Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries, Materials Today, 52, 9 (2022). Doi: https://doi.org/10.1016/j.mattod.2021.11.01 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로