$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성
Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites 원문보기

Composites research = 복합재료, v.36 no.1, 2023년, pp.1 - 15  

김미나 (Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University) ,  장지운 (Research Institute of Industrial Science, Hanyang University) ,  이혜성 (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ,  오명준 (Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University) ,  김성륜 (Department of Organic Materials and Textile Engineering, Jeonbuk National University)

초록
AI-Helper 아이콘AI-Helper

미래모빌리티의 발전 기대에 따라 에너지 소비 절감에 대한 수요가 증가하고 있다. 경량구조용소재는 온실가스 배출 감소 및 에너지 효율 향상을 위한 방안으로 알려져 있다. 특히, 섬유강화복합재료(FRP, fiber reinforced polymer composite)는 뛰어난 기계적 특성 및 낮은 무게로 인해 기존 합금을 대체할 수 있는 소재로 주목받는다. 본 논문에서는, 탄소섬유강화복합재료(CFRP, carbon FRP) 및 자기강화복합재료(SRC, self-reinforced composite)의 산업 적용 및 연구 동향을 강화재, 고분자 매트릭스 및 공정에 기반하여 검토하였다. 항공분야에서 주로 활용되는 에폭시 수지 기반 오토클레이브 공법의 높은 공정단가 및 긴 제조시간을 극복하기 위하여, 속경화성 에폭시 수지를 이용한 고압수지이송성형 공정으로 CFRP가 적용된 전기자동차의 양산을 보고하였다. 또한, 탄소섬유복합재료의 재활용 이슈를 해결하기 위한 열가소성 수지 기반 CFRP 및 계면 향상 방안들이 재료 및 공정 측면에서 검토되었다. FRP의 우수한 기계적 특성을 유도하는 주요한 요인으로 알려진 완벽한 매트릭스-강화재 계면을 형성하기 위하여, 고분자 섬유에 동일한 매트릭스를 함침시킨 SRC에 대한 연구들이 보고되고 있다. 다양한 열가소성 고분자에 기초한 SRC의 물리적 및 기계적 특성들을 고분자 배향 및 복합재료 구조 측면에서 검토하였다. 또한, 고연 신 폴리프로필렌 섬유 기반 SRC의 공정창 확장을 위한 공중합체 매트릭스 전략이 논의되었다. 경량구조용소재의 CFRP 및 SRC 적용은 미래모빌리티의 에너지 효율 향상에 대한 잠재적인 선택을 제공할 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attr...

주제어

표/그림 (17)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 논문에서는 미래모빌리티를 위한 차세대 경량구조복합재료로 고려되고 있는 CFRP 및 SRC의 재료개발, 응용 프로그램 대한 포괄적인 검토가 제공되었다.
본문요약 정보가 도움이 되었나요?

참고문헌 (79)

  1. Kim, K.S., and Park, S.J., "Technique Status of Carbon Fibers-Reinforced Composites for Aircrafts," Elastomers and Composites, Vol. 46, No. 2, 2011, pp. 118-124. 

  2. Timmis, A.J., Hodzic, A., Koh, L., Bonner, M., Soutis, S.,?Schafer, A.W., and Dray, L., "Environmental Impact Assessment of Aviation Emission Reduction Through the Implementation of Composite Materials," The International Journal of Life?Cycle Assessment, Vol. 20, No. 2, 2015, pp. 233-243. 

  3. Irving, P.E., and Soutis, C., Polymer Composites in Aerospace?Industry, Woodhead Pub. Co., Sawston, UK, 2019. 

  4. Soutis, C., "Fibre Reinforced Composites in Aircraft Construction," Progress in Aerospace Sciences, Vol. 41, No. 2, 2005, pp.?143-151. 

  5. Lee T.-H., "Applications of Carbon Fiber to the Aerospace,"?Proceeding of the 37th 2011 KSPE Fall Conference, Busan,?Korea, Nov. 2011, pp. 511-514. 

  6. Kim, D.J., Oh, D.Y., Jeong, M.K., and Nam, S.Y., "Recent Trends?in Composite Materials for Aircrafts," Applied Chemistry for?Engineering, Vol. 27, No. 3, 2016, pp. 252-258. 

  7. Parveez, B., Kittur, M.I., Badruddin, I.A., Kamangar, S., Hussien,?M., and Umarfarooq, M.A., "Scientific Advancements in Composite Materials for Aircraft Applications: A Review," Polymers,?Vol. 14, No. 22, 2022, 5007. 

  8. Giurgiutiu, V., Structural Health Monitoring of Aerospace Composites, Academic Press, New York, USA, 2015. 

  9. Campbell Jr, F.C., "Manufacturing Technology for Aerospace?Structural Materials," Elsevier, Amsterdam, The Netherlands, 2011. 

  10. Lee, J.Y., Ni, X., Daso, F., Xiao, X., Gomez, J.S., Varela, T.B., Kessler,?S.S., and Wardle, B.L., "Advanced Carbon Fiber Composite?Out-of-Autoclave Laminate Manufacture via Nanostructured?out-of-Oven Conductive Curing," Composites Science and Technology, Vol. 166, 2018, pp. 150-159. 

  11. Centea, T., Grunenfelder, L.K., and Nutt, S.R., "A Review of?Out-of-Autoclave Prepregs - Material Properties, Process Phenomena, and Manufacturing Considerations," Composites Part?A: Applied Science and Manufacturing, Vol. 70, 2015, pp. 132-154. 

  12. Trzepiecinski, T., Najm, S.M., Sbayti, M., Belhadjsalah, H.,?Szpunar, M., and Lemu, H.G., "New Advances and Future Possibilities in Forming Technology of Hybrid Metal-Polymer?Composites Used in Aerospace Applications," Journal of Composites Science, Vol. 5, No. 8, 2021, pp. 217. 

  13. Gruenfelder, L.K., and Nutt, S.R., "Void Formation in Composite Prepregs - Effect of Dissolved Moisture," Composites Science and Technology, Vol. 70, No. 16, 2010, pp. 2304-2309. 

  14. Witik, R.A., Gaille, F., Teuscher, R., Ringwald, H., Michaud, V., and Manson, J.-A.E., "Economic and Environmental Assessment of Alternative Production Methods for Composite Aircraft Components," Journal of Cleaner Production, Vol. 29-30,?2012, pp. 91-102. 

  15. Sun, X., Li, Z., Wang, X., and Li, C., "Technology Development?of Electric Vehicles: A Review," Energies, Vol. 13, No. 1, 2020,?pp. 90. 

  16. Jacob, A., "BMW Counts on Carbon Fibre for Its Megacity?Vehicle," Reinforced Plastics, Vol. 54, No.5, 2010, pp. 38-41. 

  17. Sarfraz, M.S., Hong, H., and Kim, S.S., "Recent Developments?in the Manufacturing Technologies of Composite Components?and Their Cost-Effectiveness in the Automotive Industry: A?Review Study," Composite Structures, Vol. 266, 2021, pp. 113864. 

  18. Kama Web Journal, 2016. Available at: https://www.kama.or.kr/jsp/webzine/201604/pages/report_01.jsp 

  19. Feraboli, P., and Masini, A., "Development of Carbon/Epoxy?Structural Components for a High Performance Vehicle," Composites Part B: Engineering, Vol. 35, No 4, 2004, pp. 323-330. 

  20. Stewrt, R., "Rebounding Automotive Industry Welcome News?for FRP," Reinforced Plastics, Vol. 55, No. 1, 2011, pp. 38-44. 

  21. Fuchs, A.N., Schoeberl, M., Tremmer, J., and Zaeh, M.F., "Laser?Cutting of Carbon Fiber Fabrics," Physics Procedia, Vol. 41,?2013, pp. 372-380. 

  22. Kim, M., "Industry Development Direction and Research?Trend of the Carbon Fiber Reinforced Polymer (CFRP) Composite," Polymer Science and Technology, Vol. 31, No. 6, 2020. 

  23. Cicala, G., Rosa, D.R., Musarra, M., Saccullo, G., Banatao, R.,?and Pastine, S., "Recyclable Epoxy Resins: an Example of Green?Approach for Advanced Composite Applications," AIP Conference Proceedings, Vol. 1736, No. 1, 2016, pp. 020027. 

  24. Kim, R.-W., Kim, C.-H., Hwang, K.-H., and Kim, S.-R.,?"Embedded Based Real-Time Monitoring in the High-Pressure?Resin Transfer Molding Process for CFRP," Applied Sciences,?Vol. 9, No. 9, 2019, pp. 1795. 

  25. "HP-RTM System," Dieffenbacher. 

  26. Fais, C., "Lightweight Automotive Design with HP-RTM," Reinforced Plastics, Vol. 55, No. 5, 2011, pp. 29-31. 

  27. Cheon, J., and Kim, M., "Impact Resistance and Interlaminar?Shear Strength Enhancement of Carbon Fiber Reinforced Thermoplastic Composites by Introducing MWCNT-Anchored Carbon Fiber," Composites Part B: Engineering, Vol. 217, 2021, pp. 108872. 

  28. Zhang, J., Chevali, V.S., Wang, H., and Wang, C,-H., "Current?Status of Carbon Fibre and Carbon Fibre Composites Recycling," Composites Part B: Engineering, Vol. 193, 2020, pp. 108053. 

  29. Zhang, J., Souza, M. de., Creighton, C., and Varley, R.J., "New?Approaches to Bonding Thermoplastic and Thermoset Polymer Composites," Composites Part A: Applied Science and Manufacturing, Vol. 133, 2020, pp. 105870. 

  30. Mcnally, T., Boyd, P., McClory, C., Bien, D., Moore, I., Millar, B.,?Davidson, J., and Carroll, T., "Recycled Carbon Fiber Filled?Polyethylene Composites," Journal of Applied Polymer Science,?Vol. 107, No. 3, 2008, pp. 2015-2021. 

  31. Genna, S., Leone, C., Ucciardello, M., and Giuliani, M.,?"Increasing Adhesive Bonding of Carbon Fiber Reinforced?Thermoplastic Matrix by Laser Surface Treatment," Polymer?Engineering Science, Vol. 57, No. 7, 2017, pp. 685-692. 

  32. Luo, H., Xiong, G., Ma, G., Li, D., and Wan, Y., "Preparation?and Performance of Long Carbon Fiber Reinforced Polyamide?6 Composites Injection-Molded from Core/Shell Structured?Pellets," Materials & Design, Vol. 64, 2014, pp. 294-300. 

  33. Montes-Moran, M.A., Marti?nez-Alonso, A., Tascon, J.M.D.,?and Young, R. J., "Effects of Plasma Oxidation on the Surface?and Interfacial Properties of Ultra-High Modulus Carbon?Fibres." Composites Part A: Applied Science and Manufacturing,?Vol. 32, No. 3-4, 2001, pp. 361-371. 

  34. Liu, J., Tian, Y., Chen, Y., Liang, J., Zhang, L., and Fong, H., "A?Surface Treatment Technique of Electrochemical Oxidation to?Simultaneously Improve the Interfacial Bonding Strength and?the Tensile Strength of PAN-Based Carbon Fibers," Materials?Chemistry and Physics, Vol. 122, No. 2-3, 2010, pp. 548-555. 

  35. Liu, H., Zhao, Y., Chen, F., Li, N., Sun, M., Zang, T., Sun, T.,?Wang, K., and Du, S., "Effect of Polyetherimide Sizing Involving Carbon Nanotubes on Interfacial Performance of Carbon?Fiber/Polyetheretherketone Composites," Polymers for Advanced?Technologies, Vol. 32, No. 9, 2021, pp. 3689-3700. 

  36. Jang, J.-U., Park, H.C., Lee, H.S., Khil, M.-S., and Kim, S.Y.,?"Electrically and Thermally Conductive Carbon Fibre Fabric?Reinforced Polymer Composites Based on Nanocarbons and an?In-situ Polymerizable Cyclic Oligoester," Scientific Reports, Vol.?8, No. 2, 2018, pp. 7659. 

  37. Lee, H.S., Kim, S,-y., Noh, Y.J., and Kim, S.Y., "Design of Microwave Plasma and Enhanced Mechanical Properties of Thermoplastic Composites Reinforced with Microwave Plasma-Treated?Carbon Fiber Fabric," Composites Part B: Engineering, Vol. 60,?2014, pp. 621-626. 

  38. Ono, M., Yamane, M., Tanoue, S., Uematsu, H., and Yamashita,?Y., "Mechanical Properties of Thermoplastic Composites Made?of Commingled Carbon Fiber/Nylon Fiber," Polymers, Vol. 13,?No. 19, 2021, pp. 3206. 

  39. Kim, S.W., Park, T., Um, M.K., Lee, J., Seong, D.G., and Yi, J.W.,?"Effect of Caprolactam Modified Phenoxy-Based Sizing Material on Reactive Process of Carbon Fiber-Reinforced Thermoplastic Polyamide-6," Composites Part A: Applied Science and?Manufacturing, Vol. 139, 2020, pp. 106104. 

  40. Irisawa, T., Inagaki, R., Iida, J., Iwamura, R., Ujihara, K.,?Kobayashi, S., and Tanabe, Y., "The Influence of Oxygen Containing Functional Groups on Carbon Fibers for Mechanical?Properties and Recyclability of CFRTPs Made with In-Situ?Polymerizable Polyamide 6," Composites Part A: Applied Science?and Manufacturing, Vol. 112, 2018, pp. 91-99. 

  41. Li, Y., Huang, X., Zeng, L., Li, R., Tian, H., Fu, X., Wang, Y., and?Zhong, W.-H., "A Review of the Electrical and Mechanical?Properties of Carbon Nanofiller-Reinforced Polymer Composites," Journal of Materials Science, Vol. 54, 2019, pp. 1036-1076. 

  42. Kumar, A., Sharma, K., and Dixit, A.R., "A Review on the?Mechanical Properties of Polymer Composites Reinforced by?Carbon Nanotubes and Graphene," Carbon Letters, Vol. 31,?2021, pp. 149-165. 

  43. Trivedi, D.N., and Rachchh, N.V., "Graphene and Its Application in Thermoplastic Polymers as Nano-Filler- A Review,"?Polymer, Vol. 240, 2022, pp. 124486. 

  44. Ning, N., Fu, S., Zhang, W., Chen, F., Wang, K, Deng, H.,?Zhang, Q., and Fu, Q., "Realizing the Enhancement of Interfacial Interaction in Semicrystalline Polymer/Filler Composites?via Interfacial Crystallization," Progress in Polymer Science, Vol.?37, No. 10, 2012, pp. 1425-1455. 

  45. Capiati, N.J., and Porter, R.S., "The Concept of One Polymer?Composites Modelled with High Density Polyethylene," Journal?of Materials Science, Vol. 10, 1975, pp. 1671-1677. 

  46. Majola, A., Vainionpaa, S., Rokkanen, P., Mikkola, H.-M., and?Tormala, P., "Absorbable Self-Reinforced Polylactide (SR-PLA)?Composite Rods for Fracture Fixation: Strength and Strength?Retention in the Bone and Subcutaneous Tissue of Aabbits,"?Journal of Materials Science: Materials in Medicine, Vol. 3, 1992,?pp. 43-47. 

  47. Wright-Charlesworth, D.D., Miller, D.M., Miskioglu, I., and?King, J.A., "Nanoindentation of Injection Molded PLA and?Self-Reinforced Composite PLA after In Vitro Conditioning for?Three Months," Journal of Biomedical Materials Research Part?A, Vol. 74A, No. 3, 2005, pp. 388-396. 

  48. Zakir Hossain, K.M., Felfel, R.M., Rudd, C.D., Thielemans, W.,?and Ahmed I., "The Effect of Cellulose Nanowhiskers on the?Flexural Properties of Self-Reinforced Polylactic Acid Composites," Reactive and Functional Polymers, Vol. 85, 2014, pp. 193-200. 

  49. Gao, C., Meng, L., Yu, L., Simon, G.P., Liu, H., Chen, L., and?Petinakis, S., "Preparation and Characterization of Uniaxial?Ppoly(lactic acid)-Based Self-Reinforced Composites," Composites Science and Technology, Vol. 117, 2015, pp. 392-397. 

  50. Kurokawa, N., and Hotta, A., "Thermomechanical Properties?of Highly Transparent Self-Reinforced Polylactide Composites?with Electrospun Stereocomplex Polylactide Nanofibers," Polymer, Vol. 153, 2018, pp. 214-222. 

  51. Hine, P.J., and Ward, I.M., "Hot Compaction of Woven?Poly(ethylene terephthalate) Multifilaments," Journal of Applied?Polymer Science, Vol.91, No. 4, 2003, pp. 2223-2233. 

  52. Zhang, J.M., Reynolds, C.T., and Peijs, T., "All-Poly(ethylene?terephthalate) Composites by Film Stacking of Oriented Tapes,"?Composites Part A: Applied Science and Manufacturing, Vol. 40,?No. 11, 2009, pp. 1747-1755. 

  53. Duhovic, M., Bhattacharyya, D., and Fakirov, S., "Nanofibrillar?Single Polymer Composites of Poly(ethylene terephthalate),"?Macromolecular Materials and Engineering, Vol. 295, No. 2,?2010, pp. 95-99. 

  54. Jerpdal, L., Schuette, P., Stahlberg, D., and akermo, M., "Influence of Temperature during Overmolding on the Tensile Modulus of Self-Reinforced Poly(ethylene terephthalate) Insert,"?Journal of Applied Polymer Science, Vol. 137, No. 5, 2019, pp.?48334. 

  55. Hine, P.J., and Ward, M.I., "Hot Compaction of Woven Nylon?6,6 Multifilaments," Journal of Applied Polymer Science, Vol.?101, No. 2, 2006, pp. 991-997. 

  56. Bhattacharyya, D., Maitrot, P., and Fakirov, S., "Polyamide 6?Single Polymer Composites," eXPRESS Polymer Letters, Vol. 3,?No. 8, 2009, pp. 525-532. 

  57. Gong, Y., and Yang, G., "Single Polymer Composites by Partially Melting Recycled Polyamide 6 Fibers: Preparation and?Characterization," Journal of Applied Polymer Science, Vol. 118,?No. 6, 2010, pp. 3357-3363. 

  58. Gong, Y., Liu, A., and Yang, G., "Polyamide Single Polymer?Composites Prepared via In Situ Anionic Polymerization of ε-Caprolactam," Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 8, 2010, pp. 1006-1011. 

  59. Vecchione, P., Acierno, D., Abbate, M., and Russo, P., "Hot-Compacted Self Reinforced Polyamide 6 Composite Laminates," Composites Part B: Engineering, Vol. 110, 2017, pp. 39-45. 

  60. Gilbert, J.L., Ney, D.S., and Lautenschlager, E.P., "Self-Reinforced Composite Poly(methyl methacrylate): Static and?Fatigue Properties," Biomaterials, Vol. 16, No. 14, 1995, pp.?1043-1055. 

  61. Wright, D.D., Lautenschlager, E.P., and Gilbert, J.L., "Bending?and Fracture Toughness of Woven Self-Reinforced Composite?Poly(methyl methacrylate)," Journal of Biomedical Materials?Research, Vol. 36, No. 4, 1998, pp. 441-453. 

  62. Wright, D.D., Lautenschlager, E.P., and Gilbert, J.L., "Interfacial?Properties of Self-Reinforced Composite Poly(methyl methacrylate)," Journal of Biomedical Materials Research, Vol. 43, No. 2,?2002, pp. 153-161. 

  63. Kim, D.W., Kim, Y.S., Jung, Y.C., Kim, S.Y., Song, J.M., Kim, M.,?and Kim, J., "Development of a Continuous Manufacturing?Process for Self-Reinforced Composites Using Multi-Step?Highly Drawn Polypropylene Tapes," Polymer, Vol. 191, 2020,?pp. 122267. 

  64. Lee, H., Kim, Y.S., Choi, W.H., Yun, D.W., Lee, J. Song, J.M.,?Kim, S., Kim, J., and Kim, S.Y., "Processing Temperature Window Design via Controlling Matrix Composition for Polypropylene-Based Self-Reinforced Composites," Composites Part A:?Applied Science and Manufacturing, Vol. 143, 2021, pp. 106301. 

  65. Shubhra, Q.T., Alam, A., and Quaiyyum, M., "Mechanical?Properties of Polypropylene Composites: A Review," Journal of?Thermoplastic Composite Materials, Vol. 26, No. 3, 2011, pp.?362-391. 

  66. Maddah, H.A., "Polypropylene as a Promising Plastic : A?Review, American Journal of Polymer Science, Vol. 6, No. 1,?2016, pp. 1-11. 

  67. Deng, M., and Shalaby, S.W., "Properties of Self-Reinforced?Ultra-High-Molecular-Weight Polyethylene Composites," Biomaterials, Vol. 18, No. 9, 1997, pp. 645-655. 

  68. Guan, S., Lai, F.S., McCarthy, S.P., Chiu, D., Zhu, X., and Shen,?K., "Morphology and Properties of Self-Reinforced High Density Polyethylene in Oscillating Stress Field," Polymer, Vol. 38,?No. 20, 1997, pp. 5251-5253. 

  69. Zhang, G., Jiang, L., Shen, K., and Guan, Q., "Self-Reinforcement of High-Density Polyethylene/Low-Density Polyethylene?Prepared by Oscillating Packing Injection Molding Under Low?Pressure," Journal of Applied Polymer Science, Vol. 71, No. 5,?1999, pp. 799-804.? 

  70. Huang, H.-X., "Continuous Extrusion of Self-Reinforced High?Density Polyethylene," Polymer Engineering & Science, Vol. 38,?No. 11, 2004, pp. 1805-1811. 

  71. Lei, J., Jiang, G., and Shen, K., "Biaxially Self-Reinforced High-Density Polyethylene Prepared by Dynamic Packing Injection?Molding. I. Processing parameters and mechanical properties,"?Journal of Applied Polymer Science, Vol. 93, No. 4, 2004, pp.?1584-1590. 

  72. Huang, Y,-F., Xu, J.-Z., Li, J.-S., He, B.-X., Xu, L., and Li, Z.-M.,?"Mechanical Properties and Biocompatibility of Melt Processed, Self-Reinforced Ultrahigh Molecular Weight Polyethylene," Biomaterials, Vol. 35, No. 25, 2014, pp. 6687-6697. 

  73. Gil-Castell, O., Badia, J.D., Ingles-Mascaros, S., Teruel-Juanes,?R., Serra, A., and Ribes-Greus, A., "Polylactide-Based Self-Reinforced Composites Biodegradation: Individual and Combined Influence of Temperature, Water and Compost," Polymer?Degradation and Stability, Vol. 158, 2018, pp. 40-51. 

  74. Saeidlou, S., Huneault, M.A., Li, H., and Park, C.B., "Poly(lactic?acid) Crystallization," Progress in Polymer Science, Vol. 37, No.?12, 2012, pp. 1657-1677. 

  75. Kaban, A.P.S., Rahmat, N.G., and Fatriansyah, J.F., "Kinetics of?Catalytic Pyrolysis of Polyethylene Terephthalate (PET) Plastic?Polymer with Zeolite," AIP Conference Proceedings, Vol. 2262,?2020, pp. 050007. 

  76. Mouritz, A.P., Leong, K.H., and Herszberg, I., "A Review of the?Effect of Stitching on the In-Plane Mechanical Properties of?Fibre-Reinforced Polymer Composites," Composites Part A:?Applied Science and Manufacturing, Vol. 28, No. 12, 1997, pp.?979-991. 

  77. Smith, P., and Lemstra, P.J., "Ultra-High-Strength Polyethylene?Filaments by Solution Spinning/Drawing," Journal of Materials?Science, Vol. 15, 1980, pp. 505-514. 

  78. Zafar, M.S., "Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update," Polymers, Vol. 12, No. 10, 2020,?pp. 2299. 

  79. Maddah, H.A., "Polypropylene as a Promising Plastic: A?Review," American Journal of Polymer Science, Vol. 6, 2016, pp.?1-11.? 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로