$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

순환신경망 모델을 활용한 팔당호의 단기 수질 예측
Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.39 no.1, 2023년, pp.46 - 60  

한지우 (국립환경과학원 한강물환경연구소) ,  조용철 (국립환경과학원 한강물환경연구소) ,  이소영 (국립환경과학원 한강물환경연구소) ,  김상훈 (국립환경과학원 한강물환경연구소) ,  강태구 (국립환경과학원 한강물환경연구소)

Abstract AI-Helper 아이콘AI-Helper

Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change...

주제어

표/그림 (18)

참고문헌 (45)

  1. Ahn, C. Y., Oh, H. M., and Park, Y. S. (2011). Evaluation?of environmental factors on cyanobacterial bloom in eutrophic?reservoir using artificial neural networks, Journal of?Phycology, 47(3), 495-504. 

  2. Ahu, R., Yang, L., Liu, T., Wen, X., Zhang, L., and Chang,?Y. (2019). Hydrological responses to the future climate change?in a data scarce region, Northwest China: Application of?machine learning models, Water, 11(8), 1588. 

  3. Bhandari, N. S. and Nayal, K. (2008). Correlation study on?physico-chemical parameters and quality assessment of Kosi?river water, Uttarakhand, E-Journal of Chemistry, 5(2), 342-346. 

  4. Brieman, L. (2001). Random forests, Machine Learning, 45, 5-32. 

  5. Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D.,?Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning?phrase representations using RNN encoder-decoder for?statistical machine translation, arXiv preprint arXiv, 1406.1078. 

  6. Choi, H., Suh, S. I., Kim, S. H., Han, E. J., and Ki, S. J. (2021).?Assessing the performance of deep learning algorithms for?short-term surface water quality prediction, Sustainability, 13(19), 10690. 

  7. Garcia-Nieto, P. J., Garcia-Gonzalo, E., Alonso Fernandez, J.?R., and Diaz Muniz, C. (2020). A new predictive model?for evaluating Chlorophyll-a concentration in Tanes reservoir?by using a gaussian process regression, Water Resources?Management, 34, 4921-4941. 

  8. Herzsprung, P., Wentzky, V., Kamjunke, N., Tumpling, W.,?Wilske, C., Friese, K., Boehrer, B., Reemtsma, T., Rinke,?K. J., and Lechtenfeld, O. (2020). Improved understanding?of dissolved organic matter processing in freshwater using?complementary experimental and machine learning?approaches, Environment Science & Technology, 54(21), 13556-13565. 

  9. Hochreiter, S. and Schmidhuber, J. (1997). Long short-term?memory, Neural Computation, 9(8), 1735-1780. 

  10. Hu, Z., Zhang, Y., Zhao, Y., Xie, M., Zhong, J., Tu, Z., and?Liu, J. (2019). A water quality prediction method based on?the deep LSTM network considering correlation in smart?mariculture, Sensors, 19(6), 1420. 

  11. Jo, B. G., Jung, W. S., Lee, J. M., and Kim, Y. D. (2022).?Analysis of water quality impact of Hapcheon dam reservoir?according to changes in watershed runoff using ANN, Journal?of Wetlands Research, 24(1), 25-37. [Korea Literature] 

  12. Kim, M., Lee, J., Sung, K., Lim, C., Hwang, W., and Hyun,?S. (2022). Potential impacts of climate change on water?temperature of the streams in Han-river basin, Journal of?Korean Society on Water Environment, 38(1), 19-30. [Korean Literature] 

  13. Kong, D. (2019). Evaluating effect of density flow from upstream?on vertical distribution of water quality at the Paldang?reservoir, Journal of Korea Society on Water Environment, 35(6), 557-566. [Korean Literature] 

  14. Kuo, J. T., Hsieh, M. H., Lung, W. S., and She, N. (2007).?Using artificial neural network for reservoir eutrophication prediction, Ecological Modelling, 200(1-2), 171-177. 

  15. Kwak, J. (2021). A study on the 3-month prior prediction of?Chl-a concentration in the Daechong lake using?hydrometeorological forecasting data, Journal of Wetlands?Research, 23(2), 144-153. [Korean Literature] 

  16. Lee, J. H., Lee, J. Y., Lee, M. H., Lee, M. Y., Kim, Y. W.,?Hyung, J. S., Kim, K. B., Cha, Y. K., and Koo, J. Y. (2022).?Development of a short-term water quality prediction model?for urban rivers using real-time water quality data, Water?Supply, 22(4), 4082-4097. 

  17. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and?Talwalkar, A. (2018). Hyperband: A novel bandit-based?approach to hyperparameter optimization, Journal of Machine?Learning Research, 18(1), 6765-6816. 

  18. Li, M., Xie, G. Q., Dai, C. R., Yu, L. X., Li, F. R., and Yang,?S. P. (2009). A study of the relationship between the water?body chlorophyll-a and water quality factors of the offcoast?of Dianchi lake, Yunnan Geographic Environment Research, 21(2), 102-106. 

  19. Liu, P., Wang, J., Sangaiah, A., Xie, Y., and Yin, X. (2019).?Analysis and prediction of water quality using LSTM deep?neural networks in IoT environment, Sustainability, 11(7), 2058. 

  20. Lopez-Archilla, A., Moreira, D., Lopez-Garcia, P., and Guerrero,?C. (2004). Phytoplankton diversity and cyanobacterial?dominance in a hypereutrophic shallow lake with biologically?produced alkaline pH, Extremophiles, 8(2), 109-115. 

  21. Lu, H. and Ma, X. (2020). Hybrid decision tree-based machine?learning models for short-term water quality prediction,?Chemosphere, 249, 126169. 

  22. Luo, W., Zhu, S., Wu, S., and Dai, J. (2019). Comparing artificial?intelligence techniques for chlorophyll-a prediction in US?lakes, Environmental Science and Pollution Research, 26(29), 30524-30532. 

  23. Min, Y. H., Hyun, D. Y., Eum, C. H., Chung, N., Kang, S.?W., and Lee, S. (2011), A study on relationship of?concentration of phosphorus, turbidity and pH with?temperature in water and soil, Analytical Science and?Technology, 24(5), 378-386. 

  24. Moheimani, N. R. and Borowitzka, M. A. (2006). The long-term?culture of the coccolithophore Pleurochrysis carterae?(Haptophyta) in outdoor raceway ponds, Journal of Applied?Phycology, 18(6), 703-712. 

  25. National Institute of Environmental Research (NIER). (2017).?A comprehensive study on water quality control of Paldang?watershed(III): a assessment system to diagnose and evaluate?water pollutant, National Institute of Environmental Research,?NIER-RP2017-223. Incheon, Korea, 1-50. [Korea Literature] 

  26. National Institute of Environmental Research (NIER). (2021).?Prediction on water quality variations in Paldang Reservoir?by climate change(I): Application of Data-based model?through high frequency monitoring, National Institute of?Environmental Research, NIER-RP2021-138. Incheon,?Korea, 1-50. [Korea Literature] 

  27. Park, J. (2021). The effect of input variables clustering on the?characteristics of ensemble machine learning model for water?quality prediction, Journal of Korean Society on Water?Environment, 37(5), 335-343. [Korea Literature] 

  28. Park, J. and Lee, H. (2020). Prediction of high turbidity in rivers?using LSTM algorithm, Journal of Korean Society of Water?and Wastewater, 34(1), 35-43. [Korean Literature] 

  29. Park, S. J. and Lee, D. K. (2020). Prediction of coastal flooding?risk under climate change impacts in South Korea using?machine learning algorithms, Environmental Research?Letters, 15(9), 094052. 

  30. Park, Y., Cho, K. H., Park, J., Cha, S. M., and Kim, J. H.?(2015). Development of early-warning protocol for predicting?chlorophyll-a concentration using machine learning models?in freshwater and estuarine reservoirs, Science of the Total Environment, 502, 31-41. 

  31. Rixen, T., Baum, A., Sepryani, H., Pohlmann, T., Jose, C., and?Samiaji, J. (2010). Dissolved oxygen and its response to?eutrophication in a tropical black water river, Journal of?Environmental Management, 91(8), 1730-1737. 

  32. Ruan, X. H., Shi, X. D., Zhao, Z. H., Ni, L. X., Wu, Y., and?Jiao, T. (2008). Correlation between chlorophyll-a?concentration and environmental factors in shallow lakes in?plain river network areas of Suzhou, Journal of Lake Sciences, 20(5), 556-562. 

  33. Saraceno, J. F., Pellerin, B. A., Downing, B. D., Boss, E., Bachand,?P. A., and Bergamaschi, B. A, (2009). High-frequency in?situ optical measurements during a storm event: assessing?relationships between dissolved organic matter, sediment?concentrations, and hydrologic processes, Journal of?Geophysical research, 114(G4). 

  34. Seo, H. J., Kang, I. S., Son, K. R., Eun, Y., Jeong, W. S.,?and Kim, S. J. (2019). Evaluation of water quality?characteristics using multivariate statistical analysis in the?fourth reservoir, Journal of Environmental Analysis, Health?and Toxicology, 22(3), 117-125. 

  35. Shim, S. H., Kim, Y. H., Lee, H. W., Kim, M., and Choi, J.?H. (2022). Comparison of chlorophyll-a prediction and?analysis of influential factors in Yeongsan river using machine?learning and deep learning, Journal of Korean Society on?Water Environment, 38(6), 292-305. [Korean Literature] 

  36. Singh, K. P., Basant, N., and Gupta, S. (2011). Support vector?machines in water quality management, Analytica Chimica?Acta, 703(2), 152-162. 

  37. Wang, X., Zhang, H., Bertone, E., Stewart, R., and Hughes,?S. (2021). Coupled data-driven and process-based model for?fluorescent dissolved organic matter prediction in a shallow?subtropical reservoir, Environmental Modelling & Software, 141, 105053. 

  38. Woo , J. W ., K im, Y. J., a nd Y o on, J . S. ( 2022). Predictio n?of salinity of Nakdong river estuary using deep learning?algorithm (LSTM) for time series analysis, Journal of Korean?Society of Coastal and Ocean Engineers, 34(4), 128-134. [Korea Literature] 

  39. Wu, J. and Wang, Z. (2022). A hybrid model for water quality?prediction based on an artificial neural network, wavelet?transform, and long short-term memory, Water, 14(4), 610. 

  40. Xu, J., Xu, Z., Kuang, J., Lin, C., Xiao, L., Huang, X., and?Zhang, Y. (2021). An alternative to laboratory testing: Random?Forest-based water quality prediction framework for inland?and nearshore water bodies, Water, 13(22), 3262. 

  41. Yi, H. S., Kim, D. S., Hwang, M. H., and An, K. G. (2016).?Assessment of runoff and water temperature variations under?RCP climate change scenario in Yongdam dam watershed,?South Korea, Journal of Korean Society on Water?Environment, 32(2), 173-182. [Korean Literature] 

  42. Yu, S., Lee, E., Park, M., Kim, K., Im, J., Ryu, I., Choi, H.,?Byeon, M., and Noh, H. (2018). Changes in the water?environment based on the statistical data in the lake Paldang,?Journal of Korean Society on Water Environment, 34(6), 688-702. [Korean Literature] 

  43. Zang, C., Huang, S., Wu, M., Du, S., Scholz, M., Gao, F., Lin,?C., Guo, Y., and Dong, Y. (2010). Comparison of relationships?between pH, dissolved oxygen and chlorophyll-a for?aquaculture and non-aquaculture waters, Water, Air, & Soil?Pollution, 219(1), 157-174. 

  44. Zhang, J. Y., Huang, J., Yan, F., and Zhang, Z. Q. (2009).?Preliminary study on characters of dissolved oxygen and?the relationship with pH in Meiliang lake, Journal of Fudan?University, 48(5), 623-627. 

  45. Zhu, S. and Heddam, S. (2020). Prediction of dissolved oxygen?in urban rivers at the Three Gorges reservoir, China: Extreme?learning machines (ELM) versus artificial neural network?(ANN), Water Quality Research Journal, 55(1), 106-118. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로