$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

어류가두리 양식장의 물질수지 산정
Mass Balance of Finfish Cage Farm in South Korea 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.56 no.4, 2023년, pp.473 - 483  

심보람 (국립수산과학원 서해수산연구소 기후환경자원과) ,  김형철 (국립수산과학원 남동해수산연구소) ,  윤상필 (국립수산과학원 해역이용영향평가센터) ,  홍석진 (국립수산과학원 해양환경연구과) ,  정우성 (국립수산과학원 해양환경연구과) ,  강성찬 (국립수산과학원 해양환경연구과)

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to better understand the impact of marine fish farming by estimating mass balances of carbon and nitrogen. According to the results, 94.55% of carbon and 95.66% of nitrogen inputs were from the feed supplied in the farm. Of the total carbon emissions in the farm, 47.28% was ...

주제어

표/그림 (9)

참고문헌 (66)

  1. Akintola SL. 2009. Environmental threats to the development?of aquaculture in Lagos State, Nigeria. Eur J Sci Res, 34,?337-347. 

  2. Alongi DM, Mckinnon AD, Brinkman R, Trott LA, Undu MC?and Rachmansya M. 2009. The fate of organic matter derived from small-scale fish cage aquaculture in coastal waters of Sulawesi and Sumatra, Indonesia. Aquaculture 295,?60-75. https://doi.org/10.1016/j.aquaculture.2009.06.025. 

  3. Angel MV. 1985 . Vertical migrations in the oceanic realm:?Possible causes and probable effects. In: Migration: Mechanisms and Adaptive Significance, Contributions in Marine?Science 27 (Supplement). Rankin MA, ed. Marine Science?Institute, Port Aransas, TX, U.S.A., 45-70. 

  4. Bannister RJ, Valdemarsen T, Hansen PK, Holmer M and Ervik A. 2014. Changes in benthic sediment conditions under?an Atlantic salmon farm at a deep, well-flushed coastal site.?Aquac Environ Interact 5, 29-47. https://doi.org/10.3354/aei00092. 

  5. Barton BA and Iwana GK. 1991. Physiological changes in fish?from stress in aquaculture with emphasis on the response?and effects of corticosteroids. Ann Rev Fish Dis 1, 3-26.?https://doi.org/10.1016/0959-8030(91)90019-G. 

  6. Brigolin D, Meccia VL, Venier C, Tomasseti P, Porrell S and?Pastres R. 2014. Modelling biogeochemical fluxes across?Mediterranean fish cage farm. Aquac Environ Interact 5, 71-88. https://doi.org/10.3354/aei00093. 

  7. Carroll ML, Cochrance S, Fieler R, Velvin R and White P. 2003.?Organic enrichment of sediments from salmon farming in?Norway: Environmental factors, management practices, and?monitoring techniques. Aquaculture 226, 165-180. https://doi.org/10.1016/S0044-8486(03)00475-7. 

  8. Choi M, Kim HC, Hwang DW, Lee IS, Kim YS, Kim YJ and?Choi HG. 2013. Organic enrichment and pollution in surface sediments from shellfish farming in Yeoja Bay and?Gangjin Bay, Korea. Korean J Fish Aquat Sci 46, 424-436.?https://doi.org/10.5657/KFAS.2013.0424. 

  9. Choi YH, Cho YS, Choi YS and Jeon SR. 2017. Mass balance?using the LOICZ model in Gonso and Geunso Bays. Korean?Soc Mar Environ Saf 23, 869-877. https://doi.org/10.7837/kosomes.2017.23.7.869. 

  10. Choi YH, Hong SJ, Kwon KY, Choi MK, Lee WC and Lee DI. 2023. Mass balance approach toward outbreak of chlorosis?phenomenon of the Pyropia Aquaculture farms in Biin Bay,?Korea. J Korean Soc Mar Environ Energy 26, 49-56. https://doi.org/10.7846/JKOSMEE.2023.26.1.49. 

  11. Corner RA, Brooker AJ, Telfer TC and Ross LG. 2006. A fully?integrated GIS-based model of particulate waste distribution from marine fish-cage sites. Aquaculture 258, 299-311.?https://doi.org/10.1016/j.aquaculture.2006.03.036. 

  12. Cubillo AM, Ferreira JG, Robinson SMC, Pearce CM, Corner RA and Johansen J. 2016. Role of deposit feeders in?integrated multi-trophic aquaculture-A model analysis.?Aquaculture 453, 54-66. https://doi.org/10.1016/j.aquaculture.2015.11.031. 

  13. Czamanski M, Nugraha A, Pondaven P, Lasbleiz M, Masson?A, Caroff N, Bellail R and Treguer P. 2011. Carbon, nitrogen and phosphorous elemental stoichiometry in aquaculture and wild-caught fish and consequences for pelagic?nutrient dynamics. Mar Biol 158, 2847-2862. https://doi.org/10.1007/s00227-011-1783-7. 

  14. Ervik A, Hansen PK, Aure J, Stigebrandt A, Johannessen P and?Jhonsen T. 1997. Regulating the local environmental impact of intensive marine fish farming I. The concept of the?MOM system (Modelling-Ongrwing fish farms Monitoring). Aquaculture 158, 85-94. http://doi.org/10.1016/S0044-8486(97)00186-5. 

  15. FAO (Food and Aquaculture Organization of the United?mations). 2018. The state of world fisheries and aquaculture?2018:- Meeting the sustainable development goals. FAO,?Rome, Italy. 

  16. Ferreira JG, Saurel C and Ferreira JM. 2012. Cultivation of gilthead bream in monoculture and integrated multi-trophic?aquaculture. Analysis of production and environmental effects by means of the FARM model. Aquaculture 358-359,?23-34. https://doi.org/10.1016/j.aquaculture.2012.06.015. 

  17. FOC (Fisheries and Oceans Canada). 2018. Regulating and?Monitoring British Columbia's Marine Finfish Aquaculture Facilities 2018. Fisheries and Oceans Canada, Ottawa,?Canada, 23. 

  18. Fossberg J, Forbord S, Broch OJ, Malzahn AM, Handa A, Forde?H, Bergvik M, Fleddum A, Skjermo J and Olsen Y. 2018.?The potential for upscaling kelp (Saccharina latissimi) cultivation in salmon-driven integrated multi-trophic aquaculture (IMTA). Front Mar Sci 5, 418. https://doi.org/10.3389/fmars.2018.00418. 

  19. Gowen RJ and Bradbury NB . 1987. The ecological impact of?salmonid farming in coastal waters: A review. Oceanogr?Mar Biol A Rev 25, 563-575. https://doi.org/10.1016/0198-0254(88)92716-1. 

  20. Hall POJ, Anderson LG, Kollberg S and Samuelsson MO. 1990.?Chemical fluxes and mass balances in a marine fish cage?farm. I. Carbon. Mar Ecol Prog Ser 61, 61-73. 

  21. Hall POJ, Holby O, Kollberg S and Samuellson MO. 1992.?Chenical fluxes and mass balances in a marine fish cage?farm. IV. Nitrogen. Mar Ecol Prog Ser 89, 81-91. 

  22. Hamoutene D, Hua K, Lacoursere-Roussel A, Page F, Baillie SM, Brager L, Salvo F, Coyle T, Chernoff K, Black M,?Wong D, Nelson E, Bungay T, Gaspard D, Ryall e, Mckindsey CW and Sutherland TF. 2021. Assessing trace-elements?as indicators of marine finfish aquaculture across three distinct Canadian coastal regions. Mar Pollut Bull 169, 112557.?https://doi.org/10.1016/j.marpolbul.2021.112557. 

  23. Hargrave BT, Phillips GA, Doucette LI, White MJ, Milligan?TG, Wildish DJ and Cranston RE. 1997. Assessing benthic?impacts of organic enrichment from marine aquaculture. In:?The Interactions Between Sediments and Water. Evans RD,?Wisniewski J and Wisniewski JR, eds. Springer, Dordrecht,?Netherlands. https://doi.org/10.1007/978-94-011-5552-6_65. 

  24. Holmer M. 1992. Impacts of aquaculture on surrounding sediments: generation of organic-rich sediments. In: Aquaculture and the Environment. De Pauw N and Jpyce J, des. European Aquaculture Society, Special Publication, Belgium,?155-175. 

  25. Holmer M, Marba N, Diaz-Almela E, Duarte CM, Tsapakis?M and Danovaro R. 2007. Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed?through bulk and stable isotope (δ 13 C and δ 15 N) analyses.?Aquaculture 262, 268-280. https://doi.org/10.1016/j.aquaculture.2006.09.033. 

  26. Holmer M, Marba N, Terrados J, Duarte CM and Fortes MD. 2002. Impacts of milkfish (Chanos chanos) aquaculture on?carbon and nutrient fluxes in the Bolinao area, Philippines.?Mar Pollut Bull 44, 685-696. https://doi.org/10.1016/S0025-326X(02)00048-6. 

  27. Hong SJ, Lee DI, Kim DM and Park CK. 2000. Material Budgets in the Nakdong River Estuary with simple box model. J?Korean Soc Mar Environ Energy 3, 50-57. 

  28. Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, Mangott A,?Praeger C, Vucko MJ, Zeng C, Zenger K and Strugnell JM. 2019. The future of aquatic protein: Implications for protein?sources in aquaculture diets. One Earth 1, 316-329. https://doi.org/10.1016/j.oneear.2019.10.018. 

  29. Huisman EA. 1976. Food conversion efficiencies at maintenance?and production levels for carp, Cyprinus carpio L., and rainbow trout, salmo gairdmeri Richardson. Aquaculture 9, 259-273. https://doi.org/10.1016/0044-8486(76)90068-5. 

  30. Islam MS. 2005. Nitrogen and phosphorous budget in coastal?and marine cage aquaculture and impacts of effluent loading?on ecosystem: Review and analysis towards model development. Mar Pollut Bull 50, 48-61. https://doi.org/10.1016/j.marpolbul.2004.08.008. 

  31. Ji W, Yokoyama H, Fu J and Zhou J. 2021. Effects of intensive?fish farming on sediments of a temperate bay characterized?by polyculture and strong currents. Aquac Rep 19, 100579.?https://doi.org/10.1016/j.aqrep.2020.100579. 

  32. Kang DY, Kang HW, Kim GH, Jo KC and Kim HC. 2007. Effect?of cold shock on the physiological responses of the cultured?mullet, Mugil haematocheilus in winter. J Kor Fish Soc 40,?226-233. https://doi.org/10.5657/kfas.2007.40.4.226. 

  33. Karakassis I, Tsapakis M, Hatziyanni E, Papadopoulou KN and?Plaiti W. 2000. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES Mar Sci 57,?1462-1471. https://doi.org/10.1006/jmsc.2000.0925. 

  34. Kim DY, Lee JS and Lee HD. 2013. A study on the supply and demand of fishmeal and stable securing strategies. J Fish Bus Adm 44, 61-76. https://doi.org/10.12939/FBA.2013.44.3.061. 

  35. Kim JG, Kim DM and Yang JS. 2000. Estimation of material?budget for Keum river estuary using a box model. J Korean?Soc Mar Environ Energy 3, 76-90. 

  36. KOSIS (Korean statistical information service). 2023. Survey on Fishery Processing Industry. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea. Retrieved from https://kosis.kr/statHtml/statHtml.do?orgId101&tblIdDT_1EW0004&vw_cdMT_ZTITLE&list_idK2_7&scrId&seqNo&lang_modeko&obj_var_id&itm_id&conn_pathMT_ZTITLE&path%252FstatisticsList%252FstatisticsListIndex.do on Agu 7, 2022. 

  37. Kwon JN, Jung RH, Kang YS, An KH and Lee WC. 2005. Environmental management of marine cage fish farms using?numerical modelling. The Sea 10, 181-195. 

  38. Lee JS, Jung RH, Kim KH, Kwon JN, Lee WC, Lee PY, Koo?JH and Choi WJ. 2004. An evaluation of the environmental?effects of marine cage fish farms: I. Estimation of impact?region and organic carbon cycling in sediment using sediment oxygen consumption rates and macrozoobenthos. The?Sea 9,30-39. 

  39. Lee JS, Bahk KS, Kang BJ, Kim YT, Bae JH, Kim SS, Park JJ?and Choi OI. 2010. The development of a Benthic chamber?(BelcI) for benthic boundary layer studies. The Sea 15, 41-50. 

  40. Lefebvre S, Bacher C, Meuret A and Hussenot J. 2001. Modelling nitrogen cycling in a mariculture ecosystem as a tool?to evaluate its outflow. Estuar Coast Shelf Sci 52, 305-325.?https://doi.org/10.1006/ecss.2000.0707. 

  41. Lin DT and Bailey-Brock JH. 2008. Partial recovery of infaunal communities during a fallow period at an open-ocean?aquaculture. Mar Ecol Prog Ser 371, 65-72. https://doi.org/10.3354/meps07675. 

  42. Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L,?Klinger DH, Litter DC, Lubchenco J, Shumway SE and Troell M. 2021. A 20-year retrospective review of global aquaculture. Nature 595, E36. https://doi.org/10.1038/s41586-021-03736-4. 

  43. Nelson EJ, MacDonald DA and Robinson SMC. 2012. The?absorption efficiency of the suspension-feeding sea cucumber, Cucumaria frondosa, and its potential as a extractive?integrated multi-trophic aquaculture (IMTA) species. Aquaculture 370-371, 19-25. https://doi.org/10.1016/j.aquaculture.2012.09.029. 

  44. Neofitou N, Papadimitrou K, Domenikiotis C, Tziantziou L and?Panagiotaki P. 2019. GIS in environmental monitoring and?assessment of fish farming impacts on nutrients of Pagastikos Gulf, Eastern Mediterranean. Aquaculture 501, 62-75.?https://doi.org/10.1016/j.aquaculture.2018.11.005. 

  45. Nodvarg I and Johansson T. 2002. The effects of fish farm effluents on the water quality in the Aland archipelago, Baltic Sea. Aquac Eng 25, 253-279. https://doi.org/10.1016/S0144-8609(01)00088-7. 

  46. Nylor R, Goldburg RJ, Promavera JH, Kautsky N, Beveridge?MCM, Clay J, Folke C, Lubchenco J, Mooney H and Troell M. 2000. Effect of aquaculture on world fish supplies.?Nature 405, 1017-1024. https://doi.org/10.1038/35016500. 

  47. Park J, Cho Y, Lee WC, Hong S, Kim HC, Kim JB and Park?J. 2012a. Characteristics of Carbon circulation for Ascidian?farm in Jindong Bay in summer and winter. J Wet Res 14,?211-221. 

  48. Park JH, Cho YS, Lee WC, Hong SJ, Kim HC and Kim JB. 2012b. Comparison of material flux at the sediment-water?interface in marine finfish and abalone cage farms, southern?coast of Korea: In-situ and laboratory incubation examination. J Korean Soc Mar Environ Saf 18, 536-544. https://doi.org/10.7837/kosomes.2012.18.6.536. 

  49. Park MS, Kim JK, Shin S, Min BH and Samanta P. 2021. Trophic fraction in an integrated multi-trophic aquaculture?off Tongyoung Coast: A stable isotope approach. Aquaculture 536, 736454. https://doi.org/10.1016/j.aquacultrue.2021.736454. 

  50. Park MS, Shin S, Do Y, Yarish C and Kim J. 2018. Application of open water integrated multi-trophic aquaculture to?intensive monoculture: A review of the current status and?challenges in Korea. Aquaculture 497, 174-183. https://doi.org/10.1016/j.aquaculture.2018.07.051 

  51. Pawar V, Matsuda O and Fujisaki N. 2002. Relationship between feed input and sediment quality of the fish cage?farms. Fish Sci 68, 894-903. https://doi.org/10.1046/j.1444-2906.2002.00508.x. 

  52. Pereira PMF, Black KD, McLusky DS and Nickell TD. 2004.?Recovery of sediments after cessation of marine fish?farm production. Aquaculture 235, 315-330. https://doi.org/10.1016/j.aquaculture.2003.12.023. 

  53. Pusceddu A, Fraschetti S, Miroto S, Holmer M and Danovaro R. 2007. Effects of intensive mariculture on sediment biochemistry. Ecol Appl 17, 1366-1378. https://doi.org/10.1890/06-2028.1. 

  54. Qi Z, Shi R, Yu Z, Han T, Li C, Xu S, Liang Q, Yu W, Lin H and?Huang H. 2019. Nutrient release from fish cage aquaculture?and mitigation strategies in Daya Bay, southern China. Mar?Pollut Bull 146, 399-407. https://doi.org/10.1016/j.marpolbul.2019.06.079. 

  55. Saba GK, Burd AB, Dunne JP, Hernandez-Leon SH, Martin AH,?Rose KA, Salisbury J, Steinberg DK, Trueman CN, Wilson?RW and Wilson SE. 2021. Toward a better understanding of?fish-based contribution to ocean carbon flux. Limnol Oceanogr 66, 16939-1664. https://doi.org/10.1002/lno.11709. 

  56. Silvert W and Sowles W. 1996. Modelling environmental impacts of marine finfish aquaculture. J Appl Ichthyol 12, 75-81. http://doi.org/10.1111/j.1439-0426.1996.tb00066.x. 

  57. Ticina V, Katavic I and Grubisic L. 2020. Marine aquaculture?impacts on marine biota in oligotrophic environments of the?Mediterranean Sea - A review. Front Mar Sci 7, 217. https://doi.org/10.3389/fmars.2020.00217. 

  58. Tomassetti P, Gennaro P, Lattanzi L, Mercatali I, Persia E,?Vani D and Porrello S. 2016. Benthic community response?to sediment organic enrichment by Mediterranean fish?farms: Case studies. Aquaculture 450, 262-272. https://doi.org/10.1016/j.aquaculture.2015.07.019. 

  59. Troell M, Joyce A, Chopin T, Neori A, Buschmann AH and?Fang JG. 2009. Ecological engineering in aquaculture - Potential for integrated multi-trophic aquaculture (IMTA) in?marine offshore systems. Aquaculture 297, 1-9. https://doi.org/10.1016/j.aquaculture.2009.09.010. 

  60. Tsutsumi H, Srithongouthai S, Inoue A, Sato A and Hama D. 2006. Seasonal fluctuations in the flux of particulate organic?matter discharged from net pens for fish farming. Fish Sci 72,?119-127. https://doi.org/10.1111/j.1444-2906.2006.01125.x. 

  61. Wu RSS. 1995. The environmental impact of marine fish culture: Towards a sustainable future. Mar Pollut Bull 31, 159-166. https://doi.org/10.1016/0025-326X(95)00100-2. 

  62. Yang TH and Somero GN. 1993. Effects of feeding and food?deprivation on oxygen consumption, muscle protein conceptration and activities of energy metabolism enzymes?in muscle and brain of shallow-living (Scorpaena guttata) and deep-living (Sebastolobus alascanus) scorpaened?fishes. J Exp Biol181, 213-232. https://doi.org/10.1242/jeb.181.1.213. 

  63. Yang TH, Lai NC, Graham JB and Somero GN. 1992. Respiratory, blood and heart enzymatic adaptations of Sebastolobus?alascanus (Scorpaenidae; Teleostei) to the oxygen minimum zone: A compariative study. Biol Bull 183, 490-499.?https://doi.org/10.2307/1542026. 

  64. Ye L-X, Ritz DA, Fenton GE and Lewis ME. 1991. Tracing the?influence on sediments of organic waste from a salmonid?farm using stable isotope analysis. J Exp Mar Biol Ecol 145,?161-174. https://doi.org/10.1016/0022-0981(91)90173-T. 

  65. Yokoyama H. 2003. Environmental quality criteria for fish farms?in Japan. Aquaculture 226, 45-56. http://doi.org/10.1016/S0044-8486(03)00466-6. 

  66. Yokoyama H. 2010. Monitoring, assessment and management?of fish farm environments in Japan. Rev Aquacult 2, 154-165. https://doi.org/10.1111/j.1753-5131.2010.01033.x. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로