$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

차세대 감염병 백신
Next-generation Vaccines for Infectious Viral Diseases 원문보기

생명과학회지 = Journal of life science, v.33 no.9, 2023년, pp.746 - 753  

윤선우 (국립안동대학교 백신생명공학과)

초록
AI-Helper 아이콘AI-Helper

바이러스성 전염병은 전 세계 공중 보건에 가장 큰 위협 중 하나로 간주된다. 최근 중증급성호흡기증후군 코로나바이러스-2(SARS-CoV-2)로 인한 COVID-19 대유행은 신종 바이러스 감염의 위협을 극명하게 상기시켜 주었다. 효율적인 백신과 치료제 개발 및 생산은 팬데믹을 퇴치할 수 있는 유일한 대안일 것이며 COVID-19 대유행은 새로운 바이러스성 질병을 통제하고 예방하기 위한 새로운 백신 플랫폼의 필요성을 보여주었다. 기존의 백신 플랫폼인 약독화 생백신, 불활성화 백신은 백신 개발 속도, 제조 등이 광범위한 백신 적용을 위한 긴급 사용에 한계가 있다. 흥미롭게도, COVID-19 예방을 위한 SARS-CoV-2 mRNA-지질나노입자(LNP) 플랫폼은 기존 백신 플랫폼 한계에 대한 효과적인 대안임이 확인되었다. 또한 COVID-19 mRNA 핵산 백신과 나노입자 기반 플랫폼은 SARS-CoV-2 및 변종 SARS-CoV-2 모두에 효과적인 백신임이 확인되었다. 이 논문에서는 mRNA 백신, 디지털 백신 및 나노입자백신 등의 차세대 백신 플랫폼을 중점으로 백신 기술 및 플랫폼의 장단점에 대해 기술하였다.

Abstract AI-Helper 아이콘AI-Helper

Viral infectious diseases have been regarded as one of the greatest threats to global public health. The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a stark reminder of the threat posed by emerging viral infections...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

후속연구

  • 특히, 신·변종 감염병은 사전 예측이 어렵고, 팬데믹 발생 가능성이 높기 때문에 차세대 백신 플랫폼은 신·변종 감염병 발생에 신속한 대응과 백신 공급이 가능할 것이다. 특정 백신 플랫폼만으로 모든 바이러스성 감염병을 제어하기는 어렵지만, mRNA 백신 플랫폼은 COVID-19를 통해서 백신의 효능과 안전성 등이 검증되었고 이를 통해서 감염병 예방 백신뿐만 아니라 난치성 암, 면역 관련 질환 및 유전적인 질병 등 다양한 의료 분야에서 활용할 수 있어 개인 맞춤형 백신 개발 및 치료제 개발의 잠재적 가치와 가능성을 기대할 수 있을 것이다.
본문요약 정보가 도움이 되었나요?

참고문헌 (71)

  1. Ai, L., Li, Y., Zhou, L., Yao, W., Zhang, H., Hu, Z., Han,?J., Wang, W., Wu, J., Xu, P., Wang, R., Li, Z., Li, Z.,?Wei, C., Liang, J., Chen, H., Yang, Z., Guo, M., Huang,?Z., Wang, X., Zhang, Z., Xiang, W., Sun, D., Xu, L.,?Huang, M., Lv, B., Peng, P., Zhang, S., Ji, X., Luo, H.,?Chen, N., Chen, J., Lan, K. and Hu, Y. 2023. Lyophilized?mRNA-lipid nanoparticle vaccines with long-term stability?and high antigenicity against SARS-CoV-2. Cell Discov. 9, 9.? 

  2. Allen, T. M. and Cullis, P. R. 2004. Drug delivery systems: entering the mainstream. Science 303, 1818-1822.? 

  3. Anderluzzi, G., Lou, G., Gallorini, S., Brazzoli, M., Johnson, R., O'Hagan, D. T., Baudner, B. C. and Perrie, Y.?2020. Investigating the impact of delivery system design on the efficacy of self-amplifying RNA vaccines. Vaccines?(Basel) 8, 212.? 

  4. Anderson, B. R., Muramatsu, H., Nallagatla, S. R., Bevilacqua, P. C., Sansing, L. H., Weissman, D. and Kariko, K. 2010. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic?Acids Res. 38, 5884-5892.? 

  5. Arevalo, C. P., Bolton, M. J., Sage, V. L., Ye, N., Furey,?C., Muramatsu, H., Alameh, M. -G., Pardi, N., Drapeau,?E. M., Parkhouse, K., Garretson, T., Morris, J. S., Moncla,?L. H., Tam, Y. K., Fan, S. H. Y., Lakdawala, S. S., Drew,?W. and Hensley, S. E. 2022. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus?subtypes. Science 378, 899-904.? 

  6. Bahl, K., Senn, J. J., Yuzhakov, O., Bulychev, A., Brito,?L. A., Hassett, K. J., Laska, M. E., Smith, M., Almarsson,?O., Thompson, J., Ribeiro, A. M., Watson, M., Zaks, T.?and Ciaramella, G. 2017 Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against?H10N8 and H7N9 Influenza Viruses. Mol. Ther. 25, 1316-1327.? 

  7. Benner, S., Jacob, F. and Meselson, M. 1961. An unstable?intermediate carrying information from genes to ribosomes?for protein synthesis. Nature 190, 576-581.? 

  8. Biju, V. 2014. Chemical modifications and bioconjugate?reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 43, 744-764.? 

  9. Bloom, K., van den Berg, F. and Arbuthnot, P. 2021. Self-amplifying RNA vaccines for infectious diseases. Gene?Ther. 28, 117-129. 

  10. Brundage, S. C. and Fitzpatrick, A. N. 2006. Hepatitis A.?Am. Fam. Physician 73, 2162-2168.? 

  11. Chen, S. C., Xu, C. T., Chang, C. F., Chao, T. Y., Lin,?C. C., Fu, P. W. and Yu, C. H. 2023. Optimization of?5'UTR to evade SARS-CoV-2 Nonstructural protein 1-directed inhibition of protein synthesis in cells. Appl. Microbiol. Biotechnol. 107, 2451-2468.? 

  12. Chen, T., Ding, Z., Lan, J. and Wong, G. 2023. Advances?and perspectives in the development of vaccines against?highly pathogenic bunyaviruses. Front. Cell Infect. Microbiol. 13, 1174030.? 

  13. Cheng, F., Wang, Y., Bai, Y., Liang, Z., Mao, Q., Liu,?D., Wu, X. and Xu, M. 2023. Research advances on the?stability of mRNA vaccines. Viruses 15, 668? 

  14. Christensen, D. 2016. Vaccine adjuvants: why and how.?Hum. Vaccin. Immunother. 12, 2709-2711.? 

  15. Conry, R. M., LoBuglio, A. F., Wright, M., Sumerel, L.,?Pike, M. J., Johanning, F., Benjamin, R., Lu, D. and Curiel,?D. T. 1995. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55, 1397-1400.? 

  16. Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O.?M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S.,?Schafer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K.?H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch. E.?J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B.?M., Hutchinson, G. B., Wu, K., Henry, C., Bahl, K.,?Garcia-Dominguez, D., Ma, L., Renzi, I., Kong, W. P.,?Schmidt, S. D., Wang, L., Zhang, Y., Phung, E., Chang,?L. A., Loomis, R. J., Altaras, N. E., Narayanan, E., Metkar,?M., Presnyak, V., Liu, C., Louder, M. K., Shi, W., Leung,?K., Yang, E. S., West, A., Gully, K. L., Stevens, L. J.,?Wang, N., Wrapp, D., Doria-Rose, N. A., Stewart-Jones,?G., Bennett, H., Alvarado, G. S., Nason, M. C., Ruckwardt, T. J., McLellan, J. S., Denison, M. R., Chappell,?J. D., Moore, I. N., Morabito, K. M., Mascola, J. R., Baric,?R. S., Carfi, A. and Graham, B. S. 2020. SARS-CoV-2?mRNA vaccine design enabled by prototype pathogen?preparedness. Nature 586, 567-571.? 

  17. Dimitriadis, G. J. 1978. Translation of rabbit globin mRNA?introduced by liposomes into mouse lymphocytes. Nature?274, 923-924.? 

  18. Erasmus, J. H., Khandhar, A. P., O'Connor, M. A., Walls,?A. C., Emily, A. H., Murapa, P., Archer, J., Leventhal,?S., Fuller, J. T, Lewis, T. B., Draves, K. E., Randall, S.,?Guerriero, K. A., Duthie, M. S., Carter, D., Reed, S. G.,?Hawman. D. W., Feldmann, H., Gale, M. Jr., Veesler, D.,?Berglund, P. and Fuller, D. H. 2020. An alphavirus-derived replicon RNA vaccine induces SARS-CoV-2?neutralizing antibody and T cell responses in mice and?nonhuman primates. Sci. Transl. Med. 12, eabc9396.? 

  19. Fang, E., Liu, X., Li, M., Zhang, Z., Song, L., Zhu, B.,?Wu, X., Liu, J., Zhao, D. and Li, Y. 2022. Advances in?COVID-19 mRNA vaccine development. Signal. Transduct.?Target Ther. 7, 94.? 

  20. Fischer, M., Lindsey, N., Staples, J. E. and Hills, S. 2010.?Japanese encephalitis vaccines: recommendations of the?Advisory committee on immunization practices (ACIP).?MMWR Recomm. Rep. 59, 1-27.? 

  21. Gergen, J. and Petsch, B. 2022. mRNA-based vaccines and?mode of action. Curr. Top Microbiol. Immunol. 440, 1-30.? 

  22. Griffin, D. E. and Metcalf, T. 2011. Clearance of virus?infection from the CNS. Curr. Opin. Virol. 1, 216-221.? 

  23. Hajj, K. A. and Whitehead, K. A. 2017. Tools for translation: non-viral materials for therapeutic mRNA delivery.?Nat. Rev. Mater. 2, 17056.? 

  24. He, C., Yang, J., Hong, W., Chen, Z., Peng, D., Lei, H.,?Alu, A., He, X., Bi, Z., Jiang, X., Jia, G., Yang, Y., Zhou,?Y., Yu, W., Tang, C., Huang, Q., Yang, M., Li, B., Li,?J., Wang, J., Que, H., Chen, L., Ren, W., Wan, D., Li,?J., Wang, W., Shen, G., Zhao, Z., Yang, L., Yang, J.,?Wang, Z., Su, Z., Wei, Y., Cen, X., Tanaka, Y., Song, X.,?Lu, S., Peng, X., Lu, G. and Wei, X. 2022. A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant. Nat. Commun. 13, 5459.? 

  25. Heitmann, J. S., Bilich, T., Tandler, C., Nelde, A.,?Maringer, Y., Marconato, M., Reusch, J., Jager, S., Denk,?M., Richter, M., Anton, L., Weber, L. M., Roerden, M.,?Bauer, J., Rieth, J., Wacker, M., Horber, S., Peter, A.,?Meisner, C., Fischer, I., Loffler, M. W., Karbach, J., Jager, E., Klein, R., Rammensee, H. G., Salih, H. R. and Walz,?J. S. 2022. A COVID-19 peptide vaccine for the induction?of SARS-CoV-2 T cell immunity. Nature 601, 617-622.? 

  26. Holmgren, J. and Czerkinsky, C. 2005. Mucosal immunity?and vaccines. Nat. Med. 11, S45-53.? 

  27. Houser, K. V., Chen, G. L., Carter, C., Crank, M. C.,?Nguyen, T. A., Burgos Florez, M. C., Berkowitz, N. M.,?Mendoza, F., Hendel, C. S., Gordon, I. J., Coates, E. E.,?Vazquez, S., Stein, J., Case, C. L., Lawlor, H., Carlton,?K., Gaudinski, M. R., Strom, L., Hofstetter, A. R., Liang,?C. J., Narpala, S., Hatcher, C., Gillespie, R. A., Creanga,?A., Kanekiyo, M., Raab, J. E., Andrews, S. F., Zhang, Y.,?Yang, E. S., Wang, L., Leung, K., Kong, W. P., Freyn,?A. W., Nachbagauer, R., Palese, P., Bailer, R. T.,?McDermott, A. B., Koup, R. A., Gall, J. G., Arnold, F.,?Mascola, J. R., Graham, B. S. and Ledgerwood, J. E. 2022.?Safety and immunogenicity of a ferritin nanoparticle H2?influenza vaccine in healthy adults: A phase 1 trial. Nat.?Med. 28, 383-391.? 

  28. Jackson, N. A. C., Kester, K. E., Casimiro, D., Gurunathan,?S. and DeRosa, F. 2020. The promise of mRNA vaccines: a biotech and industrial perspective. Npj Vaccines 5, 3-8.? 

  29. Kariko, K., Muramatsu, H., Welsh, F. A., Ludwig, J.,?Kato, H., Akira, S. and Weissman, D. 2008. Incorporation?of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833-1840.? 

  30. Karunakaran, B., Gupta, R., Patel, P., Salave, S., Sharma,?A., Desai, D., Benival, D. and Kommineni, N. 2023.?Emerging trends in lipid-based vaccine delivery: a special?focus on developmental strategies, fabrication methods,?and applications. Vaccines (Basel) 11, 661.? 

  31. Kelvin, A. A. and Falzarano, D. 2022. The influenza universe in an mRNA vaccine. Science 378, 827-828.? 

  32. Kew, O., Morris-Glasgow, V., Landaverde, M., Burns, C.,?Shaw, J., Garib, Z., Andre, J., Blackman, E., Freeman,?C. J., Jorba, J., Sutter, R., Tambini, G., Venczel, L.,?Pedreira, C., Laender, F., Shimizu, H., Yoneyama, T.,?Miyamura, T., van Der Avoort, H., Oberste, M. S.,?Kilpatrick, D., Cochi, S., Pallansch, M. and de Quadros,?C. 2002. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus.?Science 296, 356-359.? 

  33. Kis, Z., Kontoravdi, C., Dey, A. K., Shattock, R. and Shah,?N. 2020. Rapid development and deployment of high-volume vaccines for pandemic response. J. Adv. Manuf. Process. 2, e10060.? 

  34. Kowalski, P. S., Rudra, A., Miao, L. and Anderson, D.?G. 2019. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710-728.? 

  35. Krammer, F. 2020. SARS-CoV-2 vaccines in development.?Nature 586, 516-527.? 

  36. Larson, H. J. 2018. The state of vaccine confidence. Lancet?392, 2244-2246.? 

  37. Lazarus, J. V., Ratzan, S. C., Palayew, A., Gostin, L. O.,?Larson, H. J., Rabin, K., Kimball, S. and El-Mohandes,?A. 2020. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 27, 225-228.? 

  38. Lo, M. K., Spengler, J. R., Welch, S. R., Harmon, J. R.,?Coleman-McCray, J. D., Scholte, F. E. M., Shrivastava-Ranjan, P., Montgomery, J. M., Nichol, S. T., Weissman,?D. and Spiropoulou, C. F. 2020. Evaluation of a single-dose nucleoside-modified messenger RNA vaccine encoding hendra virus-soluble glycoprotein against lethal nipah virus challenge in syrian hamsters. J. Infect. Dis. 221, S493-S498.? 

  39. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang,?W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan,?F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao,?L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie,?Z., Ma, J., Liu, W. J., Wang, D., Xu, W., Holmes, E. C.,?Gao, G. F., Wu, G., Chen, W., Shi, W. and Tan, W. 2022.?Genomic characterisation and epidemiology of 2019 novel?coronavirus: implications for virus origins and receptor?binding. Lancet 395, 565-574.? 

  40. MaHam, A., Tang, Z., Wu, H., Wang, J. and Lin, Y. 2009.?Protein-based nanomedicine platforms for drug delivery.?Small 5, 1706-1721.? 

  41. Mahapatro, A. and Singh, D. K. 2011. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnology 9, 55.? 

  42. Martinon, F., Krishnan, S., Lenzen, G., Magne, R., Gomard,?E., Guillet, J. G., Levy, J. P. and Meulien, P. 1993. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 23, 1719-1722.? 

  43. Meyer, M., Huang, E., Yuzhakov, O., Ramanathan, P.,?Ciaramella, G. and Bukreyev, A. 2018. Modified mRNA-based vaccines elicit robust immune responses and protect?guinea pigs from ebola virus disease. J. Infect. Dis. 217, 451-455.? 

  44. Mohsen, M. O. and Bachmann, M. F. 2022. Virus-like?particle vaccinology, from bench to bedside. Cell Mol.?Immunol. 19, 993-1011.? 

  45. Moon, J. J., Suh, H., Polhemus, M. E., Ockenhouse, C.?F., Yadava, A. and Irvine, D. J. 2012. Antigen-displaying?lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One 7, e31472.? 

  46. Qian, C., Liu, X., Xu, Q., Wang, Z., Chen, J., Li, T., Zheng,?Q., Yu, H., Gu, Y., Li, S. and Xia, N. 2020. Recent progress on the versatility of virus-like particles. Vaccines?(Basel) 8, 139.? 

  47. Moradi Vahdat, M., Hemmati, F., Ghorbani, A., Rutkowska, D., Afsharifar, A., Eskandari, M. H., Rezaei, N. and?Niazi, A. 2021. Hepatitis B core-based virus-like particles: a platform for vaccine development in plants. Biotechnol.?Rep. 29, e00605.? 

  48. Palma, E., Pasqua, A., Gagliardi, A., Britti, D., Fresta, M.?and Cosco, D. 2018. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: an overview. Materials?11, E1167.? 

  49. Pardi, N., Hogan, M. J., Porter, F. W. and Weissman, D. 2018.mRNA vaccines - a new era in vaccinology. Nat.?Rev. Drug Discov. 17, 261-279.? 

  50. Pardi, N., Hogan, M. J. and Weissman, D. 2020. Recent?advances in mRNA vaccine technology. Curr. Opin. Immunol. 65, 14-20.? 

  51. Pizza, M., Pecetta, S. and Rappuoli, R. 2021. Vaccines?2020: The era of the digital vaccine is here. Sci. Transl.?Med. 13, eabm3249.? 

  52. Plowrigh, R. K., Parrish, C. R., McCallum, H., Hudson,?P. J, Ko, A. I., Graham, A. L. and Lloyd-Smith, J. O. 2017.?Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502-510.? 

  53. Richner, J. M., Himansu, S., Dowd, K. A., Butler, S. L.,?Salazar, V., Fox, J. M., Julander, J. G., Tang, W. W.,?Shresta, S., Pierson, T. C., Ciaramella, G. and Diamond,?M. S. 2017. Modified mRNA vaccines protect against zika?virus infection. Cell 169, 176.? 

  54. Rosa, S. S., Prazeres, M. F., Azevedo, A. M. and Marques,?M. P. C. 2021. Marques mRNA vaccines manufacturing:?Challenges and bottlenecks. Vaccine 39, 2190-2200.? 

  55. Roth, C., Cantaert, T., Colas, C., Prot, M., Casademont, I., Levillayer, L., Thalmensi, J., Langlade-Demoyen, P.,?Gerke, C., Bahl, K., Ciaramella, G., Simon-Loriere, E. and?Sakuntabhai, A. 2019. A Modified mRNA Vaccine targeting immunodominant NS epitopes protects against dengue?virus infection in HLA class I transgenic mice. Front.?Immunol. 10, 1424.? 

  56. Schiller, J. and Lowy, D. 2018. Explanations for the high?potency of HPV prophylactic vaccines. Vaccine 36, 4768-4773.? 

  57. Shae, D., Postma, A. and Wilson, J. T. 2016. Vaccine delivery: where polymer chemistry meets immunology. Ther.?Deliv. 7, 193-196.? 

  58. Stacey, D. 1976. Microinjection studies of duck globin?messenger RNA translation in human and avian cells. Cell?9, 725-732.? 

  59. Sulczewski, F. B., Liszbinski, R. B., Romao, P. R. T. and?Rodrigues Junior, L. C. 2018. Nanoparticle vaccines?against viral infections. Arch. Virol. 163, 2313-2325.? 

  60. Uddin, M. N. and Roni, M. A. 2021. Challenges of Storage?and Stability of mRNA-Based COVID-19 Vaccines. Vaccines (Basel) 9, 1033.? 

  61. Vu, M. N., Kelly, H. G., Kent, S. J. and Wheatley, A.?K. 2021. Current and future nanoparticle vaccines for?COVID-19. eBioMedicine 74, 103699.? 

  62. Venkatesan, P. 2021. Preliminary phase 1 results from an HIV vaccine candidate trial. Lancet Microbe 2, e95.? 

  63. Venkatraman, S. S., Ma, L. L., Natarajan, J. V. and Chattopadhyay, S. 2010. Polymer-and liposome-based nanoparticles in targeted drug delivery. Front. Biosci. (Schol?Ed) 2, 801-814.? 

  64. Vicente, T., Mota, J. P. B., Peixoto, C., Alves, P. M. and?Carrondo, M. J. T. 2011. Rational design and optimization?of downstream processes of virus particles for biopharmaceutical applications: current advances. Biotechnol. Adv.?29, 869-878.? 

  65. Vogel, A. B., Lambert, L., Kinnear, E., Busse, D., Erbar,?S., Reuter, K. C., Wicke, L., Perkovic, M., Beissert, T.,?Haas, H., Reece, S. T., Sahin, U. and Tregoning, J. S.?2018. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much?lower doses. Mol. Ther. 26, 446-455.? 

  66. Wang, Y. and Grainger, D. W. 2019. Lyophilized liposome-based parenteral drug development: reviewing?complex product design strategies and current regulatory?environments. Adv. Drug. Deliv. Rev. 151-152, 56-71.? 

  67. Williams, W. B., Wiehe, K., Saunders, K. O. and Haynes,?B. F. 2021. Strategies for induction of HIV-1 envelope-reactive broadly neutralizing antibodies. J. Int. AIDS Soc.?24, e25831.? 

  68. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song,?Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan,?M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M.,?Zheng, J. J., Xu, L., Holmes, E. C. and Zhang, Y. Z. 2020.?A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269.? 

  69. Zeng, C., Zhang, C., Walker, P. G. and Dong, Y. 2022.?Formulation and delivery technologies for mRNA vaccines. Curr. Top Microbiol. Immunol. 440, 71-110.? 

  70. Zhou, P. and Shi, Z. L. 2021. SARS-CoV-2 spillover?events. Science 371, 120-122.? 

  71. Zhu, N., Zhang, D., Wang, W., Li, X., Yang B., Song,?J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan,?F., Ma, X., Wang, D, Xu, W., Wu, G., Gao, F. G. and?Tan, W. 2020. A Novel Coronavirus from patients with?pneumonia in China, 2019. N. Engl. J. Med. 382, 727-733.? 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로