$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Chlorothalonil이 미역(Undaria pinnatifida) 배우체의 생존 및 상대성장률에 미치는 영향
The impact of chlorothalonil on female gametophyte survival rate and relative growth rate of Undaria pinnatifida 원문보기

환경생물 = Korean journal of environmental biology, v.41 no.3, 2023년, pp.256 - 265  

박윤호 (국립환경과학원 환경건강연구부 위해성평가연구과) ,  심보람 (국립수산과학원 서해수산연구소 기후환경자원과) ,  황운기 (국립수산과학원 기후환경연구부 갯벌연구센터) ,  이주욱 (국립수산과학원 서해수산연구소 기후환경자원과)

초록
AI-Helper 아이콘AI-Helper

TBT 사용이 금지된 이후, 방오도료의 방오능력을 보완하기 위하여 booster biocides를 추가하여 사용하고 있다. Booster biocides 중에서 chlorothalonil은 해양환경 내 지속적으로 유입되며 다양한 해양생물에게 심각한 독성영향을 미치고 있지만 해조류에 대한 연구는 제한적이 다. 따라서 우리나라의 주요 양식생물인 미역(Undaria pinnatifida)의 초기생활사에 chlorothalonil이 미치는 영향을 분석하였다. U. pinnatifida의 암배우체를 chlorothalonil(0, 0.03, 0.05, 0.10, 0.20, 0.40 mg L-1)에 노출하여 생존율과 상대성장률을 분석하였다. 암배우체 생존율의 무영향 농도(NOEC), 최소영향농도(LOEC), 반수치사농도(LC50)는 0.05, 0.10, 0.141 (0.121~0.166) mg L-1이었고 상대성장률의 NOEC, LOEC, 반수영향농도(EC50)은 0.10, 0.20, 0.124 (0.119~0.131) mg L-1로 분석되었다. 따라서, 미역의 암배우체는 0.05~0.10 mg L-1 이상의 농도에서 독성영향을 받기 시작할 것으로 판단된다. 본 연구의 결과는 chlorothalonil에 대한 U. pinnatifida 초기생활사의 건강도를 평가하기 위한 기준자료로 활용될 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

Chlorothalonil is continuously introduced into the marine environment and has significant toxic effects on various marine organisms, however, research on its effect on seaweed is limited. Therefore, we analyzed the impact of chlorothalonil on the early life stages of major aquaculture species in Kor...

Keyword

참고문헌 (40)

  1. Al-Dulaimi O, ME Rateb, AS Hursthouse, G Thomson and M?Yaseen. 2021. The brown seaweeds of Scotland, their importance and applications. Environments 8:59. https://doi.org/10.3390/environments8060059 

  2. Amara I, W Miled, RB Slama and N Ladhari. 2018. Antifouling?processes and toxicity effects of antifouling paints on marine?environment. A review. Environ. Toxicol. Pharmacol. 57:115-130. https://doi.org/10.1016/j.etap.2017.12.001 

  3. Bao VWW, KMY Leung, JW Qiu and MHW Lam. 2011. Acute toxicities of five commonly used antifouling booster biocides to?selected subtropical and cosmopolitan marine species. Mar.?Pollut. Bull. 62:1147-1151. https://doi.org/10.1016/j.marpolbul.2011.02.041 

  4. Bellas J. 2006. Comparative toxicity of alternative antifouling?biocides on embryos and larvae of marine invertebrates. Sci.?Total Environ. 367:573-585. https://doi.org/10.1016/j.scitotenv.2006.01.028 

  5. Christen V, J Krebs and K Fent. 2019. Fungicides chlorothanolin,?azoxystrobin and folpet induce transcriptional alterations in?genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees(Apis mellifera) at sublethal?concentrations. J. Hazard. Mater. 377:215-226. https://doi.org/10.1016/j.jhazmat.2019.05.056 

  6. Cima F, M Bragadrin and L Ballarin. 2008. Toxic effects of new?antifouling compounds on tunicate haemocytes I. Sea-Nine?211TM and chlorothalonil. Aquat. Toxicol. 86:299-312. https://doi.org/10.1016/j.aquatox.2007.11.010 

  7. DeLorenzo ME and MH Fulton. 2012. Comparative risk assessment of permethrin, chlorothalonil, and diuron to coastal?aquatic species. Mar. Pollut. Bull. 64:1291-1299. https://doi.org/10.1016/j.marpolbul.2012.05.011 

  8. DeLorenzo ME and L Serrano. 2003. Individual and mixture toxicity of three pesticides; atrazine, chlorpyrifos, and chlorothalonil?to the marine phytoplankton species Dunaliella tertiolecta.?J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes?38:529-538. https://doi.org/10.1081/PFC-120023511 

  9. Ernst W, K Doe, P Jonah, J Young, G Julien and P Hennigar. 1991.?The toxicity of chlorothalonil to aquatic fauna and the impact?of its operational use on a pond ecosystem. Arch. Environ.?Contam. Toxicol. 21:1-9. https://doi.org/10.1007/BF01055550 

  10. Garaventa F, C Gambardella, A Di Fino, M Pittore and M Faimali. 2010. Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for?ecotoxicological surveys. Ecotoxicology 19:512-519. https://doi.org/10.1007/s10646-010-0461-8 

  11. Guerreiro ADS, FEL Abreu, G Fillmann and JZ Sandrini. 2020.?Effects of chlorothalonil on the antioxidant defense system?of mussels Perna perna. Ecotox. Environ. Safe. 190:110119.?https://doi.org/10.1016/j.ecoenv.2019.110119 

  12. Guerreiro ADS, RC Rola, MT Rovani, SRD Costa and JZ Sandrini. 2017. Antifouling biocides: Impairment of bivalve immune system by chlorothalonil. Aquat. Toxicol. 189:194-199. https://doi.org/10.1016/j.aquatox.2017.06.012 

  13. Hamer M, SK Maynard and S Schneider. 2019. A pulsed-dose?study evaluating chronic toxicity of chlorothalonil to fish: A case?study for environmental risk assessment. Environ. Toxicol.?Chem. 38:1549-1559. https://doi.org/10.1002/etc.4421 

  14. Haque MN, HJ Eom, SE Nam, YK Shin and JS Rhee. 2019. Chlorothalonil induces oxidative stress and reduces enzymatic?activities of Na + /K + -ATPase and acetylcholinesterase in gill?tissues of marine bivalves. PLoS One 14:e0214236. https://doi.org/10.1371/journal.pone.0214236 

  15. Heo S, JW Lee, H Choi, SJ Yoon, KY Kwon, UK Hwang and YH?Park. 2021. Toxic effect of chlorothalonil, an antifouling agent,?on survival and population growth rate of a marine rotifer, Brachionus plicatilis. Korean J. Environ. Biol. 39:390-398. https://doi.org/10.11626/KJEB.2021.39.3.390 

  16. Hintze S, YSB Hannalla, S Guinchard, D Hunkeler and G Glauser. 2021. Determination of chlorothalonil metabolites in soil and?water samples. J. Chromatogr. A 1655:462507. https://doi.org/10.1016/j.chroma.2021.462507 

  17. Johansson P, KM Eriksson, L Axelsson and H Blanck. 2012. Effects of seven antifouling compounds on photosynthesis and?inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus). Arch. Environ. Contam. Toxicol. 63:365-377. https://doi.org/10.1007/s00244-012-9778-z 

  18. Jung SM, JS Bae, SG Kang, JS Son, JH Jeon, HJ Lee, JY Jeon,?M Sidharthan, SH Ryu and HW Shin. 2017. Acute toxicity?of organic antifouling biocides to phytoplankton Nitzschia?pungens and zooplankton Artemia larvae. Mar. Pollut. Bull.?124:811-818. https://doi.org/10.1016/j.marpolbul.2016.11.047 

  19. Key PB, SL Meyer and KW Chung. 2003. Lethal and sub-lethal?effects of the fungicide chlorothalonil on three life stages of?the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health?Part B-Pestic. Contam. Agric. Wastes 38:539-549. https://doi.org/10.1081/PFC-120023512 

  20. Lee H, J Park, K Shin, S Depuydt, S Choi, J de Saeger and T Han.?2020a. Application of a programmed semi-automated Ulva?pertusa bioassay for testing single toxicants and stream water?quality. Aquat. Toxicol. 221:105426. https://doi.org/10.1016/j.aquatox.2020.105426 

  21. Lee H, S Depuydt, S Choi, T Han and J Park. 2020b. Rapid toxicity assessment of six antifouling booster biocides using a?microplate-based chlorophyll fluorescence in Undaria pinnatifida gametophytes. Ecotoxicology 29:559-570. https://doi.org/10.1007/s10646-020-02207-2 

  22. Lee JW, H Choi, YH Park, Y Lee, S Heo and UK Hwang. 2019. Toxic evaluation of phenanthrene and zinc undecylenate using the population growth rates of marine diatom, Skeletonema?costatum. Korean J. Environ. Biol. 37:372-379. https://doi.org/10.11626/KJEB.2019.37.3.372 

  23. Lee JW, YH Park, BR Sim, HJ Jeon, S Heo and UK Hwang. 2022.?A study of environmental conditions of survival rate and relative growth rate in female gametophyte of Undaria pinnatifida?for toxicity assessment. J. Mar. Life Sci. 7:86-93. https://doi.org/10.23005/ksmls.2022.7.2.86 

  24. Lee MRN, UJ Kim, IS Lee, M Choi and JE Oh. 2015. Assessment?of organotin and tin-free antifouling paints contamination in?the Korean coastal area. Mar. Pollut. Bull. 99:157-165. https://doi.org/10.1016/j.marpolbul.2015.07.038 

  25. Lee S, J Chung, H Won, D Lee and YW Lee. 2011. Analysis of?antifouling agents after regulation of tributyltin compounds in?Korea. J. Hazard. Mater. 185:1318-1325. https://doi.org/10.1016/j.jhazmat.2010.10.048 

  26. Li X, Y Yao, S Wang and S Xu. 2020. Resveratrol relieves chlorothalonil-induced apoptosis and necroptosis through miR-15a/?Bcl2-A20 axis in fish kidney cells. Fish Shellfish Immunol.?107:427-434. https://doi.org/10.1016/j.fsi.2020.11.007 

  27. Lin H, S Zhao, X Fan, Y Ma, X Wu, Y Su and J Hu. 2019. Residue?behavior and dietary risk assessment of chlorothalonil and its?metabolite SDS-3701 in water spinach to propose maximum?residue limit (MRL). Regul. Toxicol. Pharmacol. 107:104416.?https://doi.org/10.1016/j.yrtph.2019.104416 

  28. Lopes FC, ASV Junior, CD Corcini, JAA Sanchez, DM Pires, JR?Pereira, EG Primel, G Fillmannm and CDMG Martins. 2020.?Impacts of the biocide chlorothalonil on biomarkers of oxidative stress, genotoxicity, and sperm quality in guppy Poecilia?vivipara. Ecotox. Environ. Safe. 188:109847. https://doi.org/10.1016/j.ecoenv.2019.109847 

  29. MOF. 2018. Korean Standard Method of Examination for Marine?Environment. Ministry of Oceans and Fisheries. Sejong,?Korea. https://www.law.go.kr/LSW/admRulInfoP.do?admRulSeq2100000170850#J6-0:0. Accessed August 29, 2023. 

  30. Morais LG, PK Gusso-Choueri, FEL Abreu, IB Castro, DM Abessa and RB Choueri. 2023. Multilevel assessment of chlorothalonil sediment toxicity to Latin American estuarine biota:?Effects on biomarkers, reproduction and survival in different?benthic organisms. Sci. Total Environ. 872:162215. https://doi.org/10.1016/j.scitotenv.2023.162215 

  31. Onduka T, A Kakuno, K Kono, K Ito, K Mochida and K Fujii. 2012.?Toxicity of chlorothalonil to marine organisms. Fish. Sci.?78:1301-1308. https://doi.org/10.1007/s12562-012-0562-9 

  32. Soroldoni S, F Abreu, IB Castro, FA Duarte and GLL Pinho. 2017.?Are antifouling paint particles a continuous source of toxic?chemicals to the marine environment? J. Hazard. Mater. 330:76-82. https://doi.org/10.1016/j.jhazmat.2017.02.001 

  33. Tatewaki M. 1966. Formation of a crustose sporophyte with unilocular sporangia in Scitosiphon lomentaria. Phycologia 6:62-66. https://doi.org/10.2216/i0031-8884-6-1-62.1 

  34. Thomas KV and S Brooks. 2010. The environmental fate and?effects of antifouling paint biocides. Biofouling 26:73-88.?https://doi.org/10.1080/08927010903216564 

  35. Van Scoy AR and RS Tjeerdema. 2014. Environmental fate and?toxicology of chlorothalonil. Rev. Environ. Contam. Toxicol.?323:89-105. https://doi.org/10.1007/978-3-319-06746-9_4 

  36. Voulvoulis N, MD Scrimshaw and JN Lester. 2000. Occurrence?of four biocides utilized in antifouling paints, as alternatives to?organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar. Pollut. Bull. 40:938-946. https://doi.org/10.1016/S0025-326X(00)00034-5 

  37. Wyss GS, R Charudattan, EN Rosskopf and RC Littell. 2004.?Effects of selected pesticides and adjuvants on germination?and vegetative growth of Phomopsis amaranthicola, a biocontrol agent for Amaranthus spp. Weed Res. 44:469-482.?https://doi.org/10.1111/j.1365-3180.2004.00425.x 

  38. Yee MSL, PS Khiew, WS Chiu, YF Tan, YY Kok and CO Leong. 2016. Green synthesis of graphene-silver nanocomposites?and its application as a potent marine antifouling agent.?Colloid Surf. B-Biointerfaces 148:392-401. https://doi.org/10.1016/j.colsurfb.2016.09.011 

  39. Zhang M, Z Xu, Y Teng, P Christie, J Wang, W Ren, Y Luo and Z Li. 2016. Non-target effects of repeated chlorothalonil application?on soil nitrogen cycling: The key functional gene study. Sci.?Total Environ. 543:636-643. https://doi.org/10.1016/j.scitotenv.2015.11.053 

  40. Zhang Q, M Saleem and C Wang. 2017. Probiotic strain Stenotrophomonas acidaminiphila BJ1 degrades and reduces?chlorothalonil toxicity to soil enzymes, microbial communities?and plant roots. AMB Express 7:227. https://doi.org/10.1186/s13568-017-0530-y 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로