$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 메탄올 산화 반응 메커니즘과 전기화학 산화 촉매 최신 동향
The Trends in Methanol Oxidation Reaction Mechanisms and Electrochemical Oxidation Catalysts

공업화학 = Applied chemistry for engineering, v.35 no.2, 2024년, pp.79 - 84  

봉성율 (공주대학교 화학교육과)

초록
AI-Helper 아이콘AI-Helper

메탄은 풍부하고 재생 가능한 탄화수소이지만, 온실가스로서 지구 온난화를 발생시킨다. 따라서 메탄을 유용한 화학물질이나 에너지원으로의 변환이 필요하다. 메탄올은 메탄의 부분 산화 반응을 통해 합성할 수 있는 간단하고 풍부한화학물질이다. 메탄올은 화학 공급 원료나 수송 연료로 사용될 뿐만 아니라, 저온 연료 전지의 연료로도 적합하다. 그러나 메탄올의 전기화학 산화는 복잡하고 다단계의 반응이므로, 이 반응을 이해하고 최적화하기 위해서는 새로운 전기화학촉매와 반응 메커니즘의 연구가 필요하다. 본 총설에서는 메탄올 산화 반응 메커니즘 및 최근 연구 동향과 향후 연구 방향을 고찰하였다.

Abstract AI-Helper 아이콘AI-Helper

Methane is an abundant and renewable hydrocarbon, but it causes global warming as a greenhouse gas. Therefore, methods to convert methane into useful chemicals or energy sources are needed. Methanol is a simple and abundant chemical that can be synthesized by the partial oxidation of methane. Methan...

주제어

표/그림 (4)

참고문헌 (48)

  1. A. Caballero and P. J. Perez, Methane as raw material in synthetic?chemistry: the final frontier, Chem. Soc. Rev., 42, 8809-8820?(2013).? 

  2. S. Bakkaloglu, J. Cooper, and A. Hawkes, Methane emissions along?biomethane and biogas supply chains are underestimated, One?Earth, 5, 724-736 (2022).? 

  3. G. J. MacDonald, Role of methane clathrates in past and future?climates, Clim. Change, 16, 247-281 (1990).? 

  4. N. F. Dummer, D. J. Willock, Q. He, M. J. Howard, R. J. Lewis,?G. Qi, S. H. Taylor, J. Xu, D. Bethell, C. J. Kiely, and G. J.?Hutchings, Methane oxidation to methanol, Chem. Rev., 123,?6359-6411 (2023).? 

  5. L. Yuliati and H. Yoshida, Photocatalytic conversion of methane,?Chem. Soc. Rev., 37, 1592-1602 (2008).? 

  6. H. Schwarz, Chemistry with methane: Concepts rather than recipes, Angew. Chem. Int. Ed., 50, 10096-10115 (2011).? 

  7. Innovation Outlook: Renewable Methanol (2021), https://www.irena.org/publications/2021/Jan/Innovation-Outlook-Renewable-Methanol (accessed February 26, 2024).? 

  8. J. N. Tiwari, R. N. Tiwari, G. Singh, and K. S. Kim, Recent progress in the development of anode and cathode catalysts for direct?methanol fuel cells, Nano Energy, 2, 553-578 (2013).? 

  9. J. Li, R. Wei, X. Wang, Y. Zuo, X. Han, J. Arbiol, J. Llorca, Y.?Yang, A. Cabot, and C. Cui, Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide, Angew. Chem. Int.?Ed., 59, 20826-20830 (2020).? 

  10. J. Li, C. Xing, Y. Zhang, T. Zhang, M. C. Spadaro, Q. Wu, Y.?Yi, S. He, J. Llorca, J. Arbiol, A. Cabot, and C. Cui, Nickel iron?diselenide for highly efficient and selective electrocatalytic conversion of methanol to formate, Small, 17, 2006623 (2021).? 

  11. Z. Liang, D. Jiang, X. Wang, M. Shakouri, T. Zhang, Z. Li, P.?Tang, J. Llorca, L. Liu, Y. Yuan, M. Heggen, R. E. DuninBorkowski, J. R. Morante, A. Cabot, and J. Arbiol, Molecular engineering to tune the ligand environment of atomically dispersed?nickel for efficient alcohol electrochemical oxidation, Adv. Funct.?Mater., 31, 2106349 (2021).? 

  12. Y. Qi, Y. Zhang, L. Yang, Y. Zhao, Y. Zhu, H. Jiang, and C. Li,?Insights into the activity of nickel boride/nickel heterostructures for?efficient methanol electrooxidation, Nat. Commun., 13, 4602 (2022).? 

  13. J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang, Q. Wang, L. Wang,?X.-Z. Fu, and J.-L. Luo, In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution, Appl. Catal. B?Environ., 281, 119510 (2021).? 

  14. B. D. McNicol, D. A. J. Rand, and K. R. Williams, Direct methanol-air fuel cells for road transportation, J. Power Sources, 83,?15-31 (1999).? 

  15. F. Tavani, A. Tofoni, and P. D'Angelo, Exploring the methane to?methanol oxidation over iron and copper sites in metal-organic?frameworks, Catalysts, 13, 1338 (2023).? 

  16. Y. Zuo, W. Sheng, W. Tao, and Z. Li, Direct methanol fuel cells?system-A review of dual-role electrocatalysts for oxygen reduction?and methanol oxidation, J. Mater. Sci. Technol., 114, 29-41?(2022).? 

  17. J. Wang, B. Zhang, W. Guo, L. Wang, J. Chen, H. Pan, and W. Sun,?Toward electrocatalytic methanol oxidation reaction: Longstanding?debates and emerging catalysts, Adv. Mater., 35, 2211099 (2023).? 

  18. O. A. Petrii, The progress in understanding the mechanisms of?methanol and formic acid electrooxidation on platinum group metals (a review), Russ. J. Electrochem., 55, 1-33 (2019).? 

  19. T. Yajima, H. Uchida, and M. Watanabe, In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO?at Pt-Ru alloy, J. Phys. Chem. B, 108, 2654-2659 (2004).? 

  20. H.-X. Liu, N. Tian, M. P. Brandon, Z.-Y. Zhou, J.-L. Lin, C.?Hardacre, W.-F. Lin, and S.-G. Sun, Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation, ACS Catal., 2, 708-715 (2012).? 

  21. T. Frelink, W. Visscher, and J. A. R. van Veen, The effect of Sn?on Pt/C catalysts for the methanol electro-oxidation, Electrochim.?Acta, 39, 1871-1875 (1994).? 

  22. D.-J. Chen and Y. J. Tong, Irrelevance of carbon monoxide poisoning in the methanol oxidation reaction on a PtRu electrocatalyst, Angew. Chem. Int. Ed., 54, 9394-9398 (2015).? 

  23. Y.-W. Zhou, Y.-F. Chen, K. Jiang, Z. Liu, Z.-J. Mao, W.-Y.?Zhang, W.-F. Lin, and W.-B. Cai, Probing the enhanced methanol?electrooxidation mechanism on platinum-metal oxide catalyst,?Appl. Catal. B Environ., 280, 119393 (2021).? 

  24. Y. Zhou, Q. Wang, X. Tian, and L. Feng, Efficient bifunctional?catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation, Nano?Res., 15, 8936-8945 (2022).? 

  25. F. Kong, X. Liu, Y. Song, Z. Qian, J. Li, L. Zhang, G. Yin, J.?Wang, D. Su, and X. Sun, Selectively coupling Ru single atoms?to PtNi concavities for high-performance methanol oxidation via?d-band center regulation, Angew. Chem. Int. Ed., 61, e202207524?(2022).? 

  26. F. Amouzad and K. Zarei, Layer-by-layer electrochemical assembly of Pt/phosphomolybdic acid/poly(diphenylamine)/PGE for electrocatalytic oxidation of methanol, J. Electron. Mater., 49, 3583-?3590 (2020).? 

  27. W. Liao, S. Zhou, Z. Wang, F. Liu, J. Cao, and Q. Wang,?Composition-controlled effects of Pb content in PtPbRu trimetallic?nanoparticles on the electrocatalytic oxidation performance of?methanol, Fuel, 308, 122073 (2022).? 

  28. X. Yang, Q. Wang, S. Qing, Z. Gao, X. Tong, and N. Yang,?Modulating electronic structure of an Au-nanorod-core-PdPt-alloy-shell catalyst for efficient alcohol electro-oxidation, Adv. Energy?Mater., 11, 2100812 (2021).? 

  29. S. Han, Y. Ma, Q. Yun, A.-L. Wang, Q. Zhu, H. Zhang, C. He,?J. Xia, X. Meng, L. Gao, W. Cao, and Q. Lu, The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation, Adv. Funct. Mater., 32, 2208760?(2022).? 

  30. Q. Feng, S. Zhao, D. He, S. Tian, L. Gu, X. Wen, C. Chen, Q.?Peng, D. Wang, and Y. Li, Strain engineering to enhance the electro-oxidation performance of atomic-layer Pt on intermetallic Pt3Ga,?J. Am. Chem. Soc., 140, 2773-2776 (2018).? 

  31. M. Li, Z. Zhao, W. Zhang, M. Luo, L. Tao, Y. Sun, Z. Xia, Y.?Chao, K. Yin, Q. Zhang, L. Gu, W. Yang, Y. Yu, G. Lu, and S.?Guo, Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts?alcohol oxidation electrocatalysis, Adv. Mater., 33, 2103762 (2021).? 

  32. T.-J. Wang, F.-M. Li, and H. Huang, S.-W. Yin, P. Chen, P.-J. Jin,?and Y. Chen, Porous Pd-PdO nanotubes for methanol electro-oxidation, Adv. Funct. Mater., 30, 2000534 (2020).? 

  33. H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang, Y. Yu, W. Cai, S. Li,?J. Lai, B. Huang, and L. Wang, Fast site-to-site electron transfer?of high-entropy alloy nanocatalyst driving redox electrocatalysis,?Nat. Commun., 11, 5437 (2020).? 

  34. W. Chen, S. Luo, M. Sun, X. Wu, Y. Zhou, Y. Liao, M. Tang,?X. Fan, B. Huang, and Z. Quan, High-entropy intermetallic?ptrhbisnsb nanoplates for highly efficient alcohol oxidation electrocatalysis, Adv. Mater., 34, 2206276 (2022).? 

  35. M. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang, S. Dai, W.?Chen, Z. Zhao, P. Li, H. Fei, Y. Zhu, R. Yu, J. Luo, K. Zang,?Z. Lin, M. Ding, J. Huang, H. Sun, J. Guo, X. Pan, W. A.?Goddard, P. Sautet, Y. Huang, and X. Duan, Single-atom tailoring?of platinum nanocatalysts for high-performance multifunctional?electrocatalysis, Nat. Catal., 2, 495-503 (2019).? 

  36. L. Chen, X. Liang, D. Wang, Z. Yang, C.-T. He, W. Zhao, J. Pei,?and Y. Xue, Platinum-ruthenium single atom alloy as a bifunctional electrocatalyst toward methanol and hydrogen oxidation reactions, ACS Appl. Mater. Interfaces, 14, 27814-27822 (2022).? 

  37. L. Tao, Y. Shi, Y.-C. Huang, R. Chen, Y. Zhang, J. Huo, Y. Zou,?G. Yu, J. Luo, C.-L. Dong, and S. Wang, Interface engineering of?Pt and CeO 2 nanorods with unique interaction for methanol oxidation, Nano Energy, 53, 604-612 (2018).? 

  38. J. Ruan, Y. Chen, G. Zhao, P. Li, B. Zhang, Y. Jiang, T. Ma, H.?Pan, S. X. Dou, and W. Sun, Cobalt single atoms enabling efficient methanol oxidation reaction on platinum anchored on nitrogen-doped carbon, Small, 18, 2107067 (2022).? 

  39. H. Pan, Z. Jiang, Z. Zuo, F. He, F. Wang, L. Li, Q. Chang, B.?Guan, and Y. Li, Proton selective anode nanochannel for efficient?methanol utilization, Nano Today, 39, 101213 (2021).? 

  40. L. Hui, Y. Xue, C. Xing, Y. Liu, Y. Du, Y. Fang, H. Yu, B.?Huang, and Y. Li, Highly loaded independent Pt 0 ? atoms on graphdiyne for pH-general methanol oxidation reaction, Adv. Sci., 9,?2104991 (2022).? 

  41. C. Yang, Q. Jiang, H. Huang, H. He, L. Yang, and W. Li,?Polyelectrolyte-induced stereoassembly of grain boundary-enriched?platinum nanoworms on Ti 3 C 2 T x MXene nanosheets for efficient?methanol oxidation, ACS Appl. Mater. Interfaces, 12, 23822-23830?(2020).? 

  42. J. Zhu, L. Xia, R. Yu, R. Lu, J. Li, R. He, Y. Wu, W. Zhang,?X. Hong, W. Chen, Y. Zhao, L. Zhou, L. Mai, and Z. Wang,?Ultrahigh stable methanol oxidation enabled by a high hydroxyl?concentration on Pt clusters/MXene interfaces, J. Am. Chem. Soc.,?144, 15529-15538 (2022).? 

  43. Z. Lang, Z. Zhuang, S. Li, L. Xia, Y. Zhao, Y. Zhao, C. Han, and?L. Zhou, MXene surface terminations enable strong metal-support?interactions for efficient methanol oxidation on palladium, ACS?Appl. Mater. Interfaces, 12, 2400-2406 (2020).? 

  44. W. Zhang, Q. Yao, G. Jiang, C. Li, Y. Fu, X. Wang, A. Yu, and?Z. Chen, Molecular trapping strategy to stabilize subnanometric Pt?clusters for highly active electrocatalysis, ACS Catal., 9, 11603-11613 (2019).? 

  45. X. Wang, M. Xie, F. Lyu, Y.-M. Yiu, Z. Wang, J. Chen, L.-Y.?Chang, Y. Xia, Q. Zhong, M. Chu, H. Yang, T. Cheng, T.-K.?Sham, and Q. Zhang, Bismuth oxyhydroxide-Pt inverse interface?for enhanced methanol electrooxidation performance, Nano Lett.,?20, 7751-7759 (2020).? 

  46. Z. Chen, Y. Liu, C. Liu, J. Zhang, Y. Chen, W. Hu, and Y. Deng,?Engineering the metal/oxide interface of Pd nanowire@CuOx electrocatalysts for efficient alcohol oxidation reaction, Small, 16,?1904964 (2020).? 

  47. Z. Zhang, J. Liu, J. Wang, Q. Wang, Y. Wang, K. Wang, Z.?Wang, M. Gu, Z. Tang, J. Lim, T. Zhao, and F. Ciucci, Singleatom catalyst for high-performance methanol oxidation, Nat.?Commun., 12, 5235 (2021).? 

  48. A. R. Poerwoprajitno, L. Gloag, J. Watt, S. Cheong, X. Tan, H.?Lei, H. A. Tahini, A. Henson, B. Subhash, N. M. Bedford, B. K.?Miller, P. B. O'Mara, T. M. Benedetti, D. L. Huber, W. Zhang,?S. C. Smith, J. J. Gooding, W. Schuhmann, and R. D. Tilley, A?single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient?methanol oxidation, Nat. Catal., 5, 231-237 (2022). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로