최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기공업화학 = Applied chemistry for engineering, v.35 no.2, 2024년, pp.134 - 139
성인호 (충북대학교 화학공학과) , 조경태 (충북대학교 화학공학과) , 이종대 (충북대학교 화학공학과)
In the steam reforming of methane reactions, the effect of adding noble metals Ru and Pd to a Ni-based catalyst as promoters was analyzed in terms of catalytic activity and hydrogen production. The synthesized catalysts were coated on the surface of a honeycomb-structured metal monolith to perform s...
L. Cai, T. He, Y. Xiang, and Y. Guan, Study on the reaction pathways of steam methane reforming for H2 production, Energy, 207,?118296 (2020).
D. Pashchenko, First law energy analysis of thermochemical?waste-heat recuperation by steam methane reforming, Energy, 142,?478-487 (2018).
H. Zhang, Z. Sun, and Y. H. Hu, Steam reforming of methane:?Current states of catalyst design and process upgrading, Renew.?Sust. Energ., 149, 111330 (2021).
M. A. Khan, R. Daiyan, P. Neal, N. Haque, I. MacGill, and R.?Amal, A framework for assessing economics of blue hydrogen?production from steam methane reforming using carbon capture?storage & utilization, Int. J. Hydrog. Energy, 46, 22685-22706?(2021).
P. Inbamrung, T. Sornchamni, C. Prapainainar, S. Tungkamani, P.?Narataruksa, and G. N. Jovanovic, Modeling of a square channel?monolith reactor for methane steam reforming, Energy, 152, 383-400 (2018).
J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola,?Hydrogen energy, economy and storage: review and recommendation, Int. J. Hydrog. Energy, 44, 15072-15086 (2019).
IEA, Energy technology perspectives 2020, IEA, Paris (2020).
A. Zamaniyan, H. Ebrahimi, and J. S. S. Mohammadzade, A unified model for top fired methane steam reformers using three-dimensional zonal analysis, Chem. Eng. Process., 47, 946-956 (2008).
A. E. Awadallah, D. S. El-Desouki, N. A. K. Aboul-Gheit, A. H.?Ibrahim, and A. K. Aboul-Gheit, Effect of crystalline structure and?pore geometry of silica based supported materials on the catalytic?behavior of metallic nickel particles during methane decomposition?to COx-free hydrogen and carbon nanomaterials, Int. J. Hydrog.?Energy, 41, 16890-16902 (2016).
R. Khothari, D. Buddhi, and R. L. Sawhney, Comparison of environmental and economic aspects of various hydrogen production?methods, Renew. Sust. Energ., 12, 553-563 (2008).
U. P. M. Ashik, W. M. A. W. Daud, and H. F. Abbas, Production?of greenhouse gas free hydrogen by thermocatalytic decomposition?of methane - A review, Renew. Sust. Energ., 44, 221-256 (2015).
Y. Tang, Y. Wei, Z. Wang, S. Zhang, Y. Li, L. Nguyen, Y. Li,?Y. Zhou, W. Shen, and F. F. Tao, Synergy of single-atom Ni 1 and?Ru 1 sites on CeO 2 for dry reforming of CH 4 , J. Am. Chem. Soc.,?141, 7283-7293 (2019).
M. Boudjeloud, A. Boulahouache, C. Rabia, and N. Salhi, La-doped supported Ni catalysts for steam reforming of methane, Int. J.?Hydrog. Energy, 44, 9906-9913 (2019).
J. Guo, H. Lou, L. Mo, and X. Zheng, The reactivity of surface?active carbonaceous species with CO 2 and its role on hydrocarbon?conversion reactions, J. Mol. Catal., 316, 1-7 (2010).
F. M/ Cano, L. F. Lundegaard, R. R. Tiruvalam, H. Falsig, and M.?S. Skjoth-Rasmussen, Improving the sintering resistance of Ni/Al 2 O 3 steam-reforming catalysts by promotion with noble metals,?Appl. Catal. A-Gen., 498, 117-125 (2015).
A. D. Shejale and G. D. Yadav, Noble metal promoted Ni-Cu/La 2 O 3 -MgO catalyst for renewable and enhanced hydrogen production via steam reforming of bio-based n-butanol: effect of promotion with Pt, Ru and Pd on catalytic activity and selectivity,?Clean. Technol. Environ. Policy, 21, 1323-1339 (2019).
P. O. Vargas, N. A. F. Gonzalez, R. M. Navarro, J. L. G. Fierro,?C. H. Campos, and P. Reyes, Improved stability of Ni/Al 2 O 3 catalysts?by effect of promoters (La 2 O 3 , CeO 2 ) for ethanol steam-reforming?reaction, Catal. Today, 259, 27-38 (2016).
M. Garcia-Dieguez, I. S. Pieta, M. C. Herrera, M. A. Larrubia, and?L. J. Alemany, Nanostructured Pt- and Ni-based catalysts for?CO 2 -reforming of methane, J. Catal., 270, 136-145 (2010).
S. C. Baek, K. W. Jun, Y. J. Lee, J. D. Kim, D. Y. Park, and K.?Y. Lee, Ru/Ni/MgAl 2 O 4 catalysts for steam reforming of methane:?Effects of Ru content on self-activation property, Res. Chem.?Intermed., 38, 1225-1236 (2012)
B. Steinhauer, M. R. Kasireddy, J. Radnik, and A. Martin,?Development of Ni-Pd bimetallic catalysts for the utilization of?carbon dioxide and methane by dry reforming, Appl. Catal.?A-Gen., 366, 333-341, (2009)
I. Pedroarean, L. Grande, J. J. Torrez-Herera, S. A. Korili, and A.?Gil, Analysis by temperature-programmed reduction of the catalytic system Ni-Mo-Pd/Al 2 O 3 , Fuel, 334, 126789 (2023).
A. I. Tsiotsias, N. D. Charisiou, C. Italiano, G. D. Ferrante, L.?Pino, A. Vita, V. Sebastian, S. J. Hinder, M. A. Baker, A. Sharan,?N. Singh, K. Polychronopoulou, and M. A. Goula, Ni-noble metal?bimetallic catalysts for improved low temperature CO 2 methanation, Appl. Surf. Sci., 646, 158945 (2024).
J. B. Choi, J. S. Im, S. C. Kang, Y. S. Lee, and C. W. Lee, Effect?of metal-support interaction in Ni/SiO 2 catalysts on the growth of?carbon nanotubes by methane decomposition, Carbon Lett., 33,?477-488 (2023).
D. Wu, Y. Zhang, and Y. Li, Mechanical stability of monolithic?catalysts: Improving washcoat adhesion by FeCrAl alloy substrate?treatment, J. Ind. Eng. Chem., 56, 175-184 (2017).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.