최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.66 no.3, 2024년, pp.1 - 14
고재준 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) , 이혁진 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) , 박진석 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) , 장성주 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) , 이종혁 (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) , 김동우 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) , 송인홍 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Research Institute of Agriculture and Life Sciences, Seoul National University)
Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding stream hydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method for generat...
Anders, N., J. Valente, R. Masselink, and S. Keesstra,?2019. Comparing filtering techniques for removing?vegetation from UAV-based photogrammetric point?clouds. Drones 3(3): 61. doi: 10.3390/drones3030061.
Barba, S., M. Barbarella, A. Di Benedetto, M. Fiani, L.?Gujski, and M. Limongiello, 2019. Accuracy assessment?of 3D photogrammetric models from an unmanned aerial?vehicle. Drones 3(4): 79. doi: 10.3390/drones3040079.
Bhatnagar, S., L. Gill, S. Regan, S. Waldren, and B.?Ghosh, 2021. A nested drone-satellite approach to?monitoring the ecological conditions of wetlands. ISPRS?Journal of Photogrammetry and Remote Sensing 174:?151-165. doi: 10.1016/j.isprsjprs.2021.01.012.
Cai, S., W. Zhang, X. Liang, P. Wan, J. Qi, S. Yu, G.?Yan, and J. Shao, 2019. Filtering airborne LiDAR data?through complementary cloth simulation and progressive?TIN densification filters. Remote Sensing 11(9): 1037.?doi: 10.3390/rs11091037.
Chen, Z., B. Gao, and B. Devereux, 2017.?State-of-the-art: DTM generation using airborne LIDAR?data. Sensors 17(1): 150. doi: 10.3390/s17010150.
CloudCompare, 2016. CSF (plugin), https://www.cloudcompare.org/doc/wiki/index.php/CSF_(plugin). Accessed?10 Jan, 2024.
Gabiri, G., B. Diekkruger, C. Leemhuis, S. Burghof, K.?Naschen, I. Asiimwe, and Y. Bamutaze, 2018.?Determining hydrological regimes in an agriculturally?used tropical inland valley wetland in Central Uganda?using soil moisture, groundwater, and digital elevation?data. Hydrological Processes 32(3): 349-362. doi: 10.1002/hyp.11417.
Guneralp, I., A. M. Filippi, and J. Randall, 2014.?Estimation of floodplain aboveground biomass using?multispectral remote sensing and nonparametric?modeling. International Journal of Applied Earth?Observation and Geoinformation 33: 119-126. doi: 10.1016/j.jag.2014.05.004.
Green, V., 2015. Towards Systematic Selection of?Terrain-and Ground Cover-Specific LiDAR Filtering?Parameters. B.A. diss., Arkansas, Ind.: University of?Arkansas.
Klapste, P., M. Fogl, V. Bartak, K. Gdulova, R. Urban,?and V. Moudry, 2020. Sensitivity analysis of parameters?and contrasting performance of ground filtering?algorithms with UAV photogrammetry-based and LiDAR?point clouds. International Journal of Digital Earth?13(12): 1672-1694. doi: 10.1080/17538947.2020.1791267.
Kovanic, L., P. Blistan, R. Urban, M. Stroner, M.?Blistanova, K. Bartos, and K. Pukanska, 2020. Analysis?of the suitability of high-resolution DEM obtained using?ALS and UAS (SfM) for the identification of changes?and monitoring the development of selected geohazards?in the falpine environment-A case study in high Tatras,?Slovakia. Remote Sensing 12(23): 3901. doi: 10.3390/rs12233901.
Li, F., W. Shi, Y. Tu, and H. Zhang, 2023. Automated?methods for indoor point cloud preprocessing: Coordinate?frame reorientation and building exterior removal.?Journal of Building Engineering 76: 107270. doi: 10.1016/j.jobe.2023.107270.
Mlambo, R., I. H. Woodhouse, F. Gerard, and K.?Anderson, 2017. Structure from motion (SfM)?photogrammetry with drone data: A low cost method for?monitoring greenhouse gas emissions from forests in?developing countries. Forests 8(3): 68. doi: 10.3390/f8030068.
Morgan, G. R., C. Wang, and J. T. Morris, 2021. RGB?indices and canopy height modelling for mapping tidal?marsh biomass from a small unmanned aerial system.?Remote Sensing 13(17): 3406. doi: 10.3390/rs13173406.
Nadal-Romero, E., P. Errea, J. Revuelto, and J. I.?Lopez-Moreno, 2015. The application of terrestrial laser?scanner and SfM photogrammetry in measuring erosion?and deposition processes in two opposite slopes in a?humid badlands area (central Spanish Pyrenees). Soil?1(2): 561-573. doi: 10.5194/soil-1-561-2015.
Neto, J. C., 2004. A combined statistical-soft computing?approach for classification and mapping weed species in?minimum-tillage systems. Ph.D. diss., Ind.: The?University of Nebraska-Lincoln.
Ng, H. F., D. Jargalsaikhan, H. C. Tsai, and C. Y. Lin, 2013. An improved method for image thresholding based?on the valley-emphasis method. In Proc. 2013?Asia-Pacific Signal and Information Processing?Association Annual Summit and Conference, 1-4.?Kaohsiung, Taiwan: IEEE. doi: 10.1109/APSIPA.2013.6694261.
rapidlasso, 2023. lasground_README.
Reilly, S., M. L. Clark, L. P. Bentley, C. Matley, E.?Piazza, and I. Oliveras Menor, 2021. The potential of?multispectral imagery and 3D point clouds from?unoccupied aerial systems (UAS) for monitoring forest?structure and the impacts of wildfire in?Mediterranean-climate forests. Remote Sensing 13(19): 3810. doi: 10.3390/rs13193810.
Schwarz, R., G. Mandlburger, M. Pfennigbauer, and N.?Pfeifer, 2019. Design and evaluation of a full-wave?surface and bottom-detection algorithm for LiDAR?bathymetry of very shallow waters. ISPRS Journal of?Photogrammetry and Remote Sensing 150: 1-10. doi: 10.1016/j.isprsjprs.2019.02.002.
SROCM, 2011. Report on the basic river plan (Revised)?for Bokha stream (Publication registration number?11-1611347-000013-01). Gwacheon, Korea. (in Korean)
Stroner, M., R. Urban, M. Lidmila, V. Kolar, and T.?Kremen, 2021. Vegetation filtering of a steep rugged?terrain: The performance of standard algorithms and a?newly proposed workflow on an example of a railway?ledge. Remote Sensing 13(15): 3050. doi: 10.3390/rs13153050.
Suh, J., and Y. Choi, 2017. Mapping hazardous?mining-induced sinkhole subsidence using unmanned?aerial vehicle (drone) photogrammetry. Environmental?Earth Sciences 76: 1-12. doi: 10.1007/s12665-017-6458-3.
Tan, Y., S. Wang, B. Xu, and J. Zhang, 2018. An?improved progressive morphological filter for?UAV-based photogrammetric point clouds in river bank?monitoring. ISPRS Journal of Photogrammetry and?Remote Sensing 146: 421-429. doi: 10.1016/j.isprsjprs.2018.10.013.
Tang, F., K. Li, F. Xu, L. Han, H. Zhang, and Z. Yang,?2023. Optimal ant colony algorithm for UAV airborne?LiDAR route planning in densely vegetated areas.?Journal of Applied Remote Sensing 17(4): 046506. doi: 10.1117/1.JRS.17.046506.
Villacres, J. and F. A. A. Cheein, 2022. Construction of?3D maps of vegetation indices retrieved from UAV?multispectral imagery in forested areas. Biosystems?Engineering 213: 76-88. doi: 10.1016/j.biosystemseng.2021.11.025.
Woebbecke, D. M., K. Von Bargen, G. E. Meyer, and?D. A. Mortensen, 1995. Color indices for weed?identification under various soil, residue, and lighting?conditions. Transactions of the ASAE 38(1): 259-269. doi: 10.13031/2013.27838.
Zhang, W., P. Wan, J. Qi, H. Wang, D. Xie, X. Wang,?and G. Yan, 2016. An easy-to-use airborne LiDAR data?filtering method based on cloth simulation. Remote?Sensing 8(6): 501. doi: 10.3390/rs8060501.
Zhao, X., B. Xue, Y. Su, and Q. Guo, 2016. Improved?progressive TIN densification filtering algorithm for?airborne LiDAR data in forested areas. ISPRS Journal of?Photogrammetry and Remote Sensing 117: 79-91. doi: 10.1117/1.JRS.17.046506.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.