$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 여름철 UAV 기반 LiDAR, SfM을 이용한 하천 DTM 생성 기법 비교 분석
Comparative Analysis of DTM Generation Method for Stream Area Using UAV-Based LiDAR and SfM 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.66 no.3, 2024년, pp.1 - 14  

고재준 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) ,  이혁진 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) ,  박진석 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) ,  장성주 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) ,  이종혁 (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ,  김동우 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) ,  송인홍 (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Research Institute of Agriculture and Life Sciences, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding stream hydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method for generat...

Keyword

표/그림 (13)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구는 식생 밀도가 높고 지형이 복잡한 여름철 하천을 대상으로 신뢰할 수 있는 높은 해상도와 정확도를 가진 DTM을 생성하는 방법을 개발하는 것을 목표로 한다. 이를 위해 SfM과 LiDAR 두 가지 방법으로 얻은 측량정보에 다양한 포인트 클라우드 필터링 기법을 적용하여 비교 및 분석하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Anders, N., J. Valente, R. Masselink, and S. Keesstra,?2019. Comparing filtering techniques for removing?vegetation from UAV-based photogrammetric point?clouds. Drones 3(3): 61. doi: 10.3390/drones3030061. 

  2. Asghar, U., 2017. Landslide mapping from analysis of?UAV-SFM point clouds. Ph.D. diss., Vancouver, Ind.:?University of British Columbia. doi: 10.14288/1.0357952. 

  3. Barba, S., M. Barbarella, A. Di Benedetto, M. Fiani, L.?Gujski, and M. Limongiello, 2019. Accuracy assessment?of 3D photogrammetric models from an unmanned aerial?vehicle. Drones 3(4): 79. doi: 10.3390/drones3040079. 

  4. Bhatnagar, S., L. Gill, S. Regan, S. Waldren, and B.?Ghosh, 2021. A nested drone-satellite approach to?monitoring the ecological conditions of wetlands. ISPRS?Journal of Photogrammetry and Remote Sensing 174:?151-165. doi: 10.1016/j.isprsjprs.2021.01.012. 

  5. Cai, S., W. Zhang, X. Liang, P. Wan, J. Qi, S. Yu, G.?Yan, and J. Shao, 2019. Filtering airborne LiDAR data?through complementary cloth simulation and progressive?TIN densification filters. Remote Sensing 11(9): 1037.?doi: 10.3390/rs11091037. 

  6. Chen, Z., B. Gao, and B. Devereux, 2017.?State-of-the-art: DTM generation using airborne LIDAR?data. Sensors 17(1): 150. doi: 10.3390/s17010150. 

  7. CloudCompare, 2016. CSF (plugin), https://www.cloudcompare.org/doc/wiki/index.php/CSF_(plugin). Accessed?10 Jan, 2024. 

  8. Gabiri, G., B. Diekkruger, C. Leemhuis, S. Burghof, K.?Naschen, I. Asiimwe, and Y. Bamutaze, 2018.?Determining hydrological regimes in an agriculturally?used tropical inland valley wetland in Central Uganda?using soil moisture, groundwater, and digital elevation?data. Hydrological Processes 32(3): 349-362. doi: 10.1002/hyp.11417. 

  9. Guneralp, I., A. M. Filippi, and J. Randall, 2014.?Estimation of floodplain aboveground biomass using?multispectral remote sensing and nonparametric?modeling. International Journal of Applied Earth?Observation and Geoinformation 33: 119-126. doi: 10.1016/j.jag.2014.05.004. 

  10. Green, V., 2015. Towards Systematic Selection of?Terrain-and Ground Cover-Specific LiDAR Filtering?Parameters. B.A. diss., Arkansas, Ind.: University of?Arkansas. 

  11. Kataoka, T., T. Kaneko, H. Okamoto, and S. Hata, 2003.?Crop growth estimation system using machine vision. In?Proc. 2003 IEEE/ASME International Conference on?Advanced Intelligent Mechatronics, 1079-1083. Kobe,?Japan. doi: 10.1109/AIM.2003.1225492. 

  12. Klapste, P., M. Fogl, V. Bartak, K. Gdulova, R. Urban,?and V. Moudry, 2020. Sensitivity analysis of parameters?and contrasting performance of ground filtering?algorithms with UAV photogrammetry-based and LiDAR?point clouds. International Journal of Digital Earth?13(12): 1672-1694. doi: 10.1080/17538947.2020.1791267. 

  13. Kovanic, L., P. Blistan, R. Urban, M. Stroner, M.?Blistanova, K. Bartos, and K. Pukanska, 2020. Analysis?of the suitability of high-resolution DEM obtained using?ALS and UAS (SfM) for the identification of changes?and monitoring the development of selected geohazards?in the falpine environment-A case study in high Tatras,?Slovakia. Remote Sensing 12(23): 3901. doi: 10.3390/rs12233901. 

  14. Lee, H., Y. Shin, D. Kang, and B. Kim, 2023. Effect?of areal mean rainfall estimation technique and?rainfall-runoff models on flood simulation in Samcheok?Osipcheon(riv.) basin. Korean Society of Civil Engineers?43(6): 775-784. doi: 10.12652/Ksce.2023.43.6.0775. (in?Korean). 

  15. Li, F., W. Shi, Y. Tu, and H. Zhang, 2023. Automated?methods for indoor point cloud preprocessing: Coordinate?frame reorientation and building exterior removal.?Journal of Building Engineering 76: 107270. doi: 10.1016/j.jobe.2023.107270. 

  16. Meyer, G. E., T. W. Hindman, and K. Laksmi, 1999.?Machine vision detection parameters for plant species?identification. In Proc. Agriculture and Biological Quality,?327-335. Boston, MA: SPIE. doi: 10.1117/12.336896. 

  17. Mlambo, R., I. H. Woodhouse, F. Gerard, and K.?Anderson, 2017. Structure from motion (SfM)?photogrammetry with drone data: A low cost method for?monitoring greenhouse gas emissions from forests in?developing countries. Forests 8(3): 68. doi: 10.3390/f8030068. 

  18. Morgan, G. R., C. Wang, and J. T. Morris, 2021. RGB?indices and canopy height modelling for mapping tidal?marsh biomass from a small unmanned aerial system.?Remote Sensing 13(17): 3406. doi: 10.3390/rs13173406. 

  19. Nadal-Romero, E., P. Errea, J. Revuelto, and J. I.?Lopez-Moreno, 2015. The application of terrestrial laser?scanner and SfM photogrammetry in measuring erosion?and deposition processes in two opposite slopes in a?humid badlands area (central Spanish Pyrenees). Soil?1(2): 561-573. doi: 10.5194/soil-1-561-2015. 

  20. Neto, J. C., 2004. A combined statistical-soft computing?approach for classification and mapping weed species in?minimum-tillage systems. Ph.D. diss., Ind.: The?University of Nebraska-Lincoln. 

  21. Ng, H. F., D. Jargalsaikhan, H. C. Tsai, and C. Y. Lin, 2013. An improved method for image thresholding based?on the valley-emphasis method. In Proc. 2013?Asia-Pacific Signal and Information Processing?Association Annual Summit and Conference, 1-4.?Kaohsiung, Taiwan: IEEE. doi: 10.1109/APSIPA.2013.6694261. 

  22. rapidlasso, 2023. lasground_README. 

  23. Park, H., and D. H. Lee, 2021. Comparative analysis of?filtering techniques for vegetation points removal from?photogrammetric point clouds at the stream levee.?Ecology and Resilient Infrastructure 8(4): 233-244. doi: 10.17820/ERI.2021.8.4.233. 

  24. Reilly, S., M. L. Clark, L. P. Bentley, C. Matley, E.?Piazza, and I. Oliveras Menor, 2021. The potential of?multispectral imagery and 3D point clouds from?unoccupied aerial systems (UAS) for monitoring forest?structure and the impacts of wildfire in?Mediterranean-climate forests. Remote Sensing 13(19): 3810. doi: 10.3390/rs13193810. 

  25. Schwarz, R., G. Mandlburger, M. Pfennigbauer, and N.?Pfeifer, 2019. Design and evaluation of a full-wave?surface and bottom-detection algorithm for LiDAR?bathymetry of very shallow waters. ISPRS Journal of?Photogrammetry and Remote Sensing 150: 1-10. doi: 10.1016/j.isprsjprs.2019.02.002. 

  26. SROCM, 2011. Report on the basic river plan (Revised)?for Bokha stream (Publication registration number?11-1611347-000013-01). Gwacheon, Korea. (in Korean) 

  27. Stroner, M., R. Urban, M. Lidmila, V. Kolar, and T.?Kremen, 2021. Vegetation filtering of a steep rugged?terrain: The performance of standard algorithms and a?newly proposed workflow on an example of a railway?ledge. Remote Sensing 13(15): 3050. doi: 10.3390/rs13153050. 

  28. Suh, J., and Y. Choi, 2017. Mapping hazardous?mining-induced sinkhole subsidence using unmanned?aerial vehicle (drone) photogrammetry. Environmental?Earth Sciences 76: 1-12. doi: 10.1007/s12665-017-6458-3. 

  29. Tan, Y., S. Wang, B. Xu, and J. Zhang, 2018. An?improved progressive morphological filter for?UAV-based photogrammetric point clouds in river bank?monitoring. ISPRS Journal of Photogrammetry and?Remote Sensing 146: 421-429. doi: 10.1016/j.isprsjprs.2018.10.013. 

  30. Tang, F., K. Li, F. Xu, L. Han, H. Zhang, and Z. Yang,?2023. Optimal ant colony algorithm for UAV airborne?LiDAR route planning in densely vegetated areas.?Journal of Applied Remote Sensing 17(4): 046506. doi: 10.1117/1.JRS.17.046506. 

  31. Villacres, J. and F. A. A. Cheein, 2022. Construction of?3D maps of vegetation indices retrieved from UAV?multispectral imagery in forested areas. Biosystems?Engineering 213: 76-88. doi: 10.1016/j.biosystemseng.2021.11.025. 

  32. Woebbecke, D. M., K. Von Bargen, G. E. Meyer, and?D. A. Mortensen, 1995. Color indices for weed?identification under various soil, residue, and lighting?conditions. Transactions of the ASAE 38(1): 259-269. doi: 10.13031/2013.27838. 

  33. Zhang, W., P. Wan, J. Qi, H. Wang, D. Xie, X. Wang,?and G. Yan, 2016. An easy-to-use airborne LiDAR data?filtering method based on cloth simulation. Remote?Sensing 8(6): 501. doi: 10.3390/rs8060501. 

  34. Zhao, X., B. Xue, Y. Su, and Q. Guo, 2016. Improved?progressive TIN densification filtering algorithm for?airborne LiDAR data in forested areas. ISPRS Journal of?Photogrammetry and Remote Sensing 117: 79-91. doi: 10.1117/1.JRS.17.046506. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로