$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 머신러닝 기법을 활용한 고혈압 환자의 건강 관련 삶의 질 요인 예측
Using Machine Learning Techniques to Predict Health-Related Quality of Life Factors in Patients with Hypertension 원문보기

Journal of the Korean Society of Integrative Medicine = 대한통합의학회지, v.12 no.3, 2024년, pp.11 - 24  

정재혁 (남부대학교 일반대학원 물리치료학과) ,  조성현 (남부대학교 물리치료학과)

Abstract AI-Helper 아이콘AI-Helper

Purpose : This study aims to identify the factors influencing health-related quality of life through machine learning of the general characteristics of patients with hypertension and to provide a basis for related research on patients, such as intervention strategies and management guidelines in the...

Keyword

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구는 고혈압 환자의 성별, 나이, 교육 수준, 가구 총 소득, 결혼 여부, 체질량 지수, 우울감, 불안감, 자살생각, 스트레스 인지 정도, 주관적 건강 상태, 규칙적 운동 여부, 걷기, 흡연 여부, 음주 여부 정도를 머신러닝의 알고리즘 중 하나인 랜덤포레스트와 로지스틱 회귀분석 알고리즘을 적용하고 물리치료 영역에서 고혈압 환자의 건강 관련 삶의 질에 대한 영향요인을 파악하고자 한다. 각 분석방법에 따라 제시되는 주요 요인들을 비교하고 제시하여 고혈압 환자에게 고혈압 관리지침, 교육, 접근 가능한 내용 등을 살펴봄으로써 물리치료 연구의 기초자료를 제공하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Baek SK, Park JH, Kang SH, et al(2018). A study on the?development of severity-adjusted mortality prediction?model for discharged patient with acute stroke using?machine learning. Journal of the Korea?Academia-Industrial Cooperation Society, 19(11),?126-136. DOI: 10.5762/KAIS.2018.19.11.126? 

  2. Bang SY, Hyeon SS(2018). Health behaviors and quality of?life in the elderly with high blood pressure. Journal of?Digital Contents Society, 19(11), 2159-2166. DOI:10.9728/dcs.2018.19.11.2159? 

  3. Byeon HW, Cho SH(2015). The predictive modeling of?middle-aged hypertension using integrated method of?decision tree and neural network. Asia-pacific Journal of?Multimedia Services Convergent with Art, Humanities,?and Sociology, 23(4), 13-28. DOI: 10.14257/AJMAHS.2015.04.25? 

  4. Chang SJ, Jang SJ, Lee SH, et al(2017). Factors influencing?quality of life and its measurements in patients with?hypertension : a systematic review. Journal of Muscle?and Joint Health, 24(1), 24-36. DOI: 10.5953/JMJH.2017.24.1.24? 

  5. Cho SU, Kim KL, Lee SE, et al(2023). A correlation?analysis between depression and economic activity using?logistic regression. Proceedings of Symposium of the?Korean Institute of communications and Information?Sciences, 159, 1086-1087.? 

  6. Choi MN, Lee EH(2015). Relationships of depression?symptom, self-esteem, and stress to health-related?quality of life in patients with hypertension registered to?a community health center. Journal of Korean Public?Health Nursing, 29(2), 165-176. DOI:10.5932/JKPHN.2015.29.2.165? 

  7. Clement DL(2015). Control of hypertension: is the goal?reached?. 65(1), 25-26. DOI: 10.1161/HYPERTENSIONAHA. 114.04256? 

  8. Connelly L(2020). Logistic regression. Medsurg Nursing;?Pitman, 29(5), 353-354.? 

  9. Devlin NJ, Brooks R(2017). EQ-5D and the euroqol group?: past, present and future. Appl Health Econ Health?Policy, 15(2), 127-137. DOI: 10.1007/s40258-017-0310-5? 

  10. Jeong SW, Lee MJ, Yoo SY(2021). Machine learning-based?stroke risk prediction using public big data. Journal of?Advanced Navigation Technology, 25(1), 96-101. DOI:10.12673/jant.2021.25.1.96? 

  11. Kang SA, Kim SH, Ryu MH(2022). Analysis of?hypertension risk factors by life cycle based on machine?learning. Journal of the Korea Industrial Information?Systems Research, 27(5), 73-82. DOI: 10.9723/jksiis.2022.27.5.073? 

  12. Kang SJ(2016). Factors influencing quality of life among?cancer survivors : using KNHANES 2010-2014. Journal?of the Korea Contents Association, 16(9), 628-637.? 

  13. Kim AC, Bae HJ(2020). Impact of physical activity, body?mass index and depression on the health related quality?of life according to the presence of hypertension in the?elderly women. Journal of the Korea AcademiaIndustrial Cooperation Society, 21(11), 543-553. DOI:10.5762/kais.2020.21.11.543? 

  14. Kim ES(2021). Factor influencing health-related quality of?life in Korean hypertensive seniors with osteoarthritis.?Journal of the Korea Academia-Industrial cooperation?Society, 22(3), 169-180. DOI: 10.5762/KAIS.2021.22.3.169? 

  15. Kim HS, Jeong SH, Park SK(2019). Decision-tree analysis?to predict blood pressure control status among?hypertension patients taking antihypertensive?medications. Journal of Korean Biological Nursing?Science, 21(1), 85-97. DOI: 10.7586/jkbns.2019.21.1.85? 

  16. Kim HJ, Min ES(2020). Health behaviors and quality of?life by life cycle of hypertensive patients. Journal of?Convergence for Information Technology, 10(7), 58-66.?DOI: 10.22156/CS4SMB.2020.10.07.058? 

  17. Kim KS(2022). A study on health behaviors of the young?adults and the elderly with hypertension : a secondary?analysis of the 2018 Korea health panel data. Journal of?Industrial Convergence, 20(11), 141-148. DOI:10.22678/JIC.2022.20.11.141? 

  18. Kim SH, Kim MJ(2018). Factors influencing quality of life?in a serious case : the sixth Korea national health and?nutrition examination survey. Journal of Korean Society?for School & Community Health Education, 19(1),?13-25.? 

  19. Kim YJ(2018). Issues and responses to advances in AI?technology. Korea Institute of Science & Technology?Evaluation and Planning, Issue Weekly, 34(252), 1-29.? 

  20. Lee HH, Chung SH, Choi EJ(2016). A case study on?machine learning applications and performance?improvement in learning algorithm. Journal of Digital?Convergence, 14(2), 245-258. DOI: 10.14400/JDC.2016.14.2.245? 

  21. Lee HS(2014). The factors influencing health-related quality?of life in the elderly - focused on the general?characteristics, health habits, mental health, chronic?diseases, and nutrient intake status: data from the fifth?Korea national health and nutrition examination survey?(KNHANES V), 2010~2012. Korean Journal of?Community Nutrition, 19(5), 479-489. DOI: 10.5720/kjcn.2014.19.5.479? 

  22. Lee HY(2018). Evaluation and management of hypertensive?patients according to new hypertension guideline.?Korean Journal of Medicine, 93(5), 447-451. DOI:10.3904/kjm.2018.93.5.447? 

  23. Lee KE, Cho EH(2016). Factors influencing health related?quality of life in patients with hypertension : based on?the 5th Korean national health and nutrition examination?survey. Journal of the Korea Contents Association,?16(5), 399-409. DOI: 10.5392/JKCA.2016.16.05.399? 

  24. Lee KY, Kim JH(2016). Artificial intelligence technology?trends and IBM watson references in the medical field.?Korean Medical Education Review, 18(2), 51-57. DOI:10.17496/KMER.2016.18.2.51? 

  25. Lim HK(2018). Prediction of myocardial infarction/angina?and selection of major risk factors using machine?learning. Journal of The Korean Data Analysis Society,?20(2), 647-656. DOI: 10.37727/jkdas.2018.20.2.647? 

  26. Mills KT, Bundy JD, Kelly TN, et al(2016). Global?disparities of hypertension prevalence and control: a?systematic analysis of population-based studies from 90?countries. Circulation, 134(6), 441-50. DOI:10.1161/CIRCULATIONAHA.115.018912? 

  27. Park CY(2015). Data mining with R. Rev. 1st, Seoul,?Kyowoo media, pp.431.? 

  28. Park JA, Hong JY(2017). Factors influencing quality of life?in adult cancer patients : the sixth Korea national health?and nutrition examination survey (KNHANES VI-2),?2014. Journal of the Korea Academia-Industrial?cooperation Society, 18(5), 382-390. DOI: 10.5762/KAIS.2017.18.5.382? 

  29. Rhee EJ(2022). Current status of obesity treatment in?Korea: based on the 2020 Korean society for the study?of obesity guidelines for obesity management. Journal?of the Korean Medical Association, 65(7), 388-392.?DOI: 10.5124/jkma.2022.65.7.388? 

  30. Samadian F, Dalili N, Jamalian A(2016). Lifestyle?modifications to prevent and control hypertension. Iran J?Kidney Dis, 10(5), 237-263.? 

  31. Youn JH, Kim JS, Cho KH, et al(2015). Trends in?cardiovascular disease risk factors by obesity: Korea?national health and nutrition examination survey?2001~2013. Korean Journal of Family Practice, 5(3),?382-388.? 

  32. Korea Disease Control and Prevention Agency. Trends in?hypertension prevalence 2012-2022, 2024. Available at?https://doi.org/10.56786/PHWR.2024.17.17.3 Accessed?May 29, 2024.? 

  33. Korea Health Panel. Sampling and panel?characteristics(version 2.0). Available at https://www.khp.re.kr:444/web/survey/sampling.do Accessed March?10, 2024.? 

  34. Korea Hypertension Management Association. Hypertension?health facts-cure, 2024. Available at http://www.khma.or.kr/hypertension/cure.php Accessed May 29, 2024.? 

  35. Korean Statistical Information Service, Subjective Health?Status, Available at https://kosis.kr/statHtml/statHtml.do?orgId143&tblIdDT_11430222_2022&vw_cdMT_ZTITLE&list_id114_11437_002_005&seqNo&lang_modeko&languagekor&obj_var_id&itm_id&conn_pathMT_ZTITLE Accessed March 10, 2024.? 

  36. The Korean Society of Hypertension. Korean society of?hypertension guidelines, 2024. Available at?https://www.koreanhypertension.org/reference/guide?moderead&idno10081 Accessed March 10, 2024.? 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로