$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Synergistic Effect of Eugenol and Probiotic Lactobacillus Plantarum Zs2058 against Salmonella Infection in C57bl/6 Mice 원문보기

Nutrients, v.12 no.6, 2020년, pp.1611 -   

Song, Fanfen (State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China) ,  Liu, Junsheng (17851300257@163.com (F.S.)) ,  Zhao, Wenyu (ljshmail@163.com (J.L.)) ,  Huang, Hongxuan (zwyjiangnan@163.com (W.Z.)) ,  Hu, Diangeng (hhxhuang@hotmail.com (H.H.)) ,  Chen, Haiqin (7160112050@vip.jiangnan.edu.cn (D.H.)) ,  Zhang, Hao (haiqinchen@jiangnan.edu.cn (H.C.)) ,  Chen, Wei (zhanghao@jiangnan.edu.cn (H.Z.)) ,  Gu, Zhennan (weichen@jiangnan.edu.cn (W.C.))

Abstract AI-Helper 아이콘AI-Helper

Previously, we showed the preventive effects of Lactobacillus plantarum ZS2058 (ZS2058) on Salmonella infection in murine models. In this work, we found that eugenol has a selective antibacterial effect, which inhibited Salmonella more than probiotics ZS2058 in vitro. It suggested a synergistic effe...

주제어

참고문헌 (47)

  1. 1. Antillon M. Warren J.L. Crawford F.W. Weinberger D.M. Kurum E. Pak G.D. Marks F. Pitzer V.E. The burden of typhoid fever in low- and middle-income countries: A meta-regression approach PLoS Negl. Trop. Dis. 2017 11 e0005376 10.1371/journal.pntd.0005376 28241011 

  2. 2. Mogasale V. Maskery B. Ochiai R.L. Lee J.S. Mogasale V.V. Ramani E. Kim Y.E. Park J.K. Wierzba T.F. Burden of typhoid fever in low-income and middle-income countries: A systematic, literature-based update with risk-factor adjustment Lancet Glob. Health 2014 2 e570 e580 10.1016/S2214-109X(14)70301-8 25304633 

  3. 3. Parry C.M. Typhoid fever N. Engl. J. Med. 2002 347 1770 1782 10.1056/NEJMra020201 12456854 

  4. 4. Gunn J.S. Marshall J.M. Baker S. Dongol S. Charles R.C. Ryan E.T. Salmonella chronic carriage: Epidemiology, diagnosis, and gallbladder persistence Trends Microbiol. 2014 22 648 655 10.1016/j.tim.2014.06.007 25065707 

  5. 5. Pitzer V.E. Bowles C.C. Baker S. Kang G. Balaji V. Farrar J.J. Grenfell B.T. Predicting the impact of vaccination on the transmission dynamics of typhoid in South Asia: A mathematical modeling study PLoS Negl. Trop. Dis. 2014 8 e2642 10.1371/journal.pntd.0002642 24416466 

  6. 6. Saul A. Smith T. Maire N. Stochastic simulation of endemic Salmonella enterica serovar Typhi: The importance of long lasting immunity and the carrier state PLoS ONE 2013 8 e74097 10.1371/journal.pone.0074097 24040177 

  7. 7. Lam L.H. Monack D.M. Intraspecies competition for niches in the distal gut dictate transmission during persistent Salmonella infection PLoS Pathog. 2014 10 e1004527 10.1371/journal.ppat.1004527 25474319 

  8. 8. Johnson R. Mylona E. Frankel G. Typhoidal Salmonella: Distinctive virulence factors and pathogenesis Cell Microbiol. 2018 20 e12939 10.1111/cmi.12939 30030897 

  9. 9. Xu X. Gong L. Wang B. Wu Y. Wang Y. Mei X. Xu H. Tang L. Liu R. Zeng Z. Glycyrrhizin Attenuates Salmonella enterica Serovar Typhimurium Infection: New Insights Into Its Protective Mechanism Front. Immunol. 2018 9 2321 10.3389/fimmu.2018.02321 30459751 

  10. 10. Daphne A.C. Stapels P.W.S.H. Westermann A.J. Fisher R.A. Thurston T.L. Saliba A. Blommestein I. Vogel J. Helaine S. Salmonella persisters undermine host immune defenses during antibiotic treatment Science 2018 362 1156 1160 30523110 

  11. 11. Tanner S.A. Chassard C. Rigozzi E. Lacroix C. Stevens M.J. Bifidobacterium thermophilum RBL67 impacts on growth and virulence gene expression of Salmonella enterica subsp. enterica serovar Typhimurium BMC Microbiol. 2016 16 46 10.1186/s12866-016-0659-x 26988691 

  12. 12. Liu J. Gu Z. Song F. Zhang H. Zhao J. Chen W. Lactobacillus plantarum ZS2058 and Lactobacillus rhamnosus GG Use Different Mechanisms to Prevent Salmonella Infection in vivo Front. Microbiol. 2019 10 299 10.3389/fmicb.2019.00299 30842764 

  13. 13. Liu J. Hu D. Chen Y. Huang H. Zhang H. Zhao J. Gu Z. Chen W. Strain-specific properties of Lactobacillus plantarum for prevention of Salmonella infection Food Funct. 2018 9 3673 3682 10.1039/C8FO00365C 29956713 

  14. 14. Wang Y. Ding Y. Wang S. Chen H. Zhang H. Chen W. Gu Z. Chen Y.Q. Extract of Syzygium aromaticum suppress eEF1A protein expression and fungal growth J. Appl. Microbiol. 2017 123 80 91 10.1111/jam.13478 28445616 

  15. 15. Barboza J.N. da Silva Maia Bezerra Filho C. Silva R.O. Medeiros J.V.R. de Sousa D.P. An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol Oxid. Med. Cell Longev. 2018 2018 3957262 10.1155/2018/3957262 30425782 

  16. 16. Api A.M. Belsito D. Bhatia S. Bruze M. Calow P. Dagli M.L. Dekant W. Fryer A.D. Kromidas L. La Cava S. RIFM fragrance ingredient safety assessment, Eugenol, CAS Registry Number 97-53-0 Food Chem. Toxicol. 2016 97S S25 S37 10.1016/j.fct.2015.12.013 26702986 

  17. 17. Burt S. Essential oils: Their antibacterial properties and potential applications in foods--a review Int. J. Food Microbiol. 2004 94 223 253 10.1016/j.ijfoodmicro.2004.03.022 15246235 

  18. 18. Vimal A. Jha A. Kumar A. Eugenol derivatives prospectively inhibit l-asparaginase: A heady target protein of Salmonella typhimurium Microb. Pathog. 2018 114 8 16 10.1016/j.micpath.2017.11.009 29138086 

  19. 19. Upadhyay A. Upadhyaya I. Mooyottu S. Venkitanarayanan K. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella J. Med. Microbiol. 2016 65 443 455 10.1099/jmm.0.000251 27002648 

  20. 20. Gutierrez S. Moran A. Martinez-Blanco H. Ferrero M.A. Rodriguez-Aparicio L.B. The Usefulness of Non-Toxic Plant Metabolites in the Control of Bacterial Proliferation Probiotics Antimicrob. Proteins 2017 9 323 333 10.1007/s12602-017-9259-9 28357646 

  21. 21. Hawrelak J.A. Cattley T. Myers S.P. Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study Altern. Med. Rev. A J. Clin. Ther. 2009 14 380 384 

  22. 22. Deng X. Luo Z. Liu Y. Zhang Y. Feng H. Wang J. Application of eugenol in the preparation of drugs to treat salmonella infection Chinese patent 2017 201610935684.3 

  23. 23. Barthel M. Hapfelmeier S. Quintanilla-Martinez L. Kremer M. Rohde M. Hogardt M. Pfeffer K. Russmann H. Hardt W.D. Pretreatment of Mice with Streptomycin Provides a Salmonella enterica Serovar Typhimurium Colitis Model That Allows Analysis of Both Pathogen and Host Infect. Immun. 2003 71 2839 2858 10.1128/IAI.71.5.2839-2858.2003 12704158 

  24. 24. Bassanetti I. Carcelli M. Buschini A. Montalbano S. Leonardi G. Pelagatti P. Tosi G. Massi P. Fiorentini L. Rogolino D. Investigation of antibacterial activity of new classes of essential oils derivatives Food Control 2017 73 606 612 10.1016/j.foodcont.2016.09.010 

  25. 25. Mao B. Li D. Ai C. Zhao J. Zhang H. Chen W. Lactulose Differently Modulates the Composition of Luminal and Mucosal Microbiota in C57BL/6J Mice J. Agric. Food Chem. 2016 64 6240 6247 10.1021/acs.jafc.6b02305 27438677 

  26. 26. Gang W. Yu Z. Tian F. Xing J. Chen H. Liu X. Zhang Q. Zhao J. Chen Y. Hao Z. Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni Food Control 2014 44 49 57 

  27. 27. Jacobson A. Lam L. Rajendram M. Tamburini F. Honeycutt J. Pham T. Van Treuren W. Pruss K. Stabler S.R. Lugo K. A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection Cell Host Microbe 2018 24 296 307 e297 10.1016/j.chom.2018.07.002 30057174 

  28. 28. Rossi O. van Berkel L.A. Chain F. Tanweer Khan M. Taverne N. Sokol H. Duncan S.H. Flint H.J. Harmsen H.J. Langella P. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses Sci. Rep. 2016 6 18507 10.1038/srep18507 26725514 

  29. 29. Herp S. Brugiroux S. Garzetti D. Ring D. Jochum L.M. Beutler M. Eberl C. Hussain S. Walter S. Gerlach R.G. Mucispirillum schaedleri Antagonizes Salmonella Virulence to Protect Mice against Colitis Cell Host Microbe 2019 25 681 694.e688 10.1016/j.chom.2019.03.004 31006637 

  30. 30. Wu M. Li J. An Y. Li P. Xiong W. Li J. Yan D. Wang M. Zhong G. Chitooligosaccharides Prevents the Development of Colitis-Associated Colorectal Cancer by Modulating the Intestinal Microbiota and Mycobiota Front Microbiol. 2019 10 2101 10.3389/fmicb.2019.02101 31620100 

  31. 31. Lievin-Le Moal V. Servin A.L. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: From probiotics to gastrointestinal anti-infectious biotherapeutic agents Clin. Microbiol. Rev. 2014 27 167 199 10.1128/CMR.00080-13 24696432 

  32. 32. Andreevskaya M. Jaaskelainen E. Johansson P. Ylinen A. Paulin L. Bjorkroth J. Auvinen P. Food Spoilage-Associated Leuconostoc, Lactococcus, and Lactobacillus Species Display Different Survival Strategies in Response to Competition Appl. Environ. Microbiol. 2018 84 e00554-18 10.1128/AEM.00554-18 29678911 

  33. 33. Stecher B. Chaffron S. Kappeli R. Hapfelmeier S. Freedrich S. Weber T.C. Kirundi J. Suar M. McCoy K.D. von Mering C. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria PLoS Pathog. 2010 6 e1000711 10.1371/journal.ppat.1000711 20062525 

  34. 34. Foley S.L. Johnson T.J. Ricke S.C. Nayak R. Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars Microbiol. Mol. Biol. Rev. 2013 77 582 607 10.1128/MMBR.00015-13 24296573 

  35. 35. LaRock D.L. Chaudhary A. Miller S.I. Salmonellae interactions with host processes Nat. Rev. Microbiol. 2015 13 191 205 10.1038/nrmicro3420 25749450 

  36. 36. Laughlin R.C. Knodler L.A. Barhoumi R. Payne H.R. Wu J. Gomez G. Pugh R. Lawhon S.D. Baumler A.J. Steele-Mortimer O. Spatial segregation of virulence gene expression during acute enteric infection with Salmonella enterica serovar Typhimurium mBio 2014 5 e00946-13 10.1128/mBio.00946-13 24496791 

  37. 37. Que F. Wu S. Huang R. Salmonella pathogenicity island 1(SPI-1) at work Curr. Microbiol. 2013 66 582 587 10.1007/s00284-013-0307-8 23370732 

  38. 38. Palmer A.D. Kim K. Slauch J.M. PhoP-Mediated Repression of the SPI1 Type 3 Secretion System in Salmonella enterica Serovar Typhimurium J. Bacteriol. 2019 201 e00264-19 10.1128/JB.00264-19 31182495 

  39. 39. Everest P. Ketley J. Hardy S. Douce G. Khan S. Shea J. Holden D. Maskell D. Dougan G. Evaluation of Salmonella typhimurium Mutants in a Model of Experimental Gastroenteritis Infect. Immun. 1999 67 2815 2821 10.1128/IAI.67.6.2815-2821.1999 10338486 

  40. 40. Keszei A.F. Tang X. McCormick C. Zeqiraj E. Rohde J.R. Tyers M. Sicheri F. Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase Mol. Cell. Biol. 2014 34 362 373 10.1128/MCB.01360-13 24248594 

  41. 41. Lu R. Wu S. Liu X. Xia Y. Zhang Y.G. Sun J. Chronic effects of a Salmonella type III secretion effector protein AvrA in vivo PLoS ONE 2010 5 e10505 10.1371/journal.pone.0010505 20463922 

  42. 42. Perez-Morales D. Banda M.M. Chau N.Y.E. Salgado H. Martinez-Flores I. Ibarra J.A. Ilyas B. Coombes B.K. Bustamante V.H. The transcriptional regulator SsrB is involved in a molecular switch controlling virulence lifestyles of Salmonella PLoS Pathog. 2017 13 e1006497 10.1371/journal.ppat.1006497 28704543 

  43. 43. Steele-Mortimer O. The Salmonella-containing vacuole: Moving with the times Curr. Opin. Microbiol. 2008 11 38 45 10.1016/j.mib.2008.01.002 18304858 

  44. 44. Wood M.W. Jones M.A. Watson P.R. Siber A.M. McCormick B.A. Hedges S. Rosqvist R. Wallis T.S. Galyov E.E. The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis Cell Microbiol. 2000 2 293 303 10.1046/j.1462-5822.2000.00054.x 11207586 

  45. 45. Jennings E. Thurston T.L.M. Holden D.W. Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences Cell Host Microbe 2017 22 217 231 10.1016/j.chom.2017.07.009 28799907 

  46. 46. Hitchcock J.R. Cook C.N. Bobat S. Ross E.A. Flores-Langarica A. Lowe K.L. Khan M. Dominguez-Medina C.C. Lax S. Carvalho-Gaspar M. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets J. Clin. Investig. 2015 125 4429 4446 10.1172/JCI79070 26571395 

  47. 47. Islamuddin M. Chouhan G. Want M.Y. Ozbak H.A. Hemeg H.A. Afrin F. Immunotherapeutic Potential of Eugenol Emulsion in Experimental Visceral Leishmaniasis PLoS Negl. Trop. Dis. 2016 10 e0005011 10.1371/journal.pntd.0005011 27776125 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로