최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of alloys and compounds, v.843, 2020년, pp.155878 -
Park, Hyemin (Advanced Materials Division, Korea Research Institute of Chemical Technology) , Choi, Seul ki (Advanced Materials Division, Korea Research Institute of Chemical Technology) , Lee, Eun Gyu (Advanced Materials Division, Korea Research Institute of Chemical Technology) , Wu, Mihye (Advanced Materials Division, Korea Research Institute of Chemical Technology) , Huu, Ha Tran (Division of Materials Science and Engineering, Hanyang University) , Kang, Yongku (Advanced Materials Division, Korea Research Institute of Chemical Technology) , Kim, Do Youb (Advanced Materials Division, Korea Research Institute of Chemical Technology) , Im, Won Bin (Division of Materials Science and Engineering, Hanyang University) , Choi, Sungho (Advanced Materials Division, Korea Research Institute of Chemical Technology Republic)
Abstract Solvent-free ceramic/polymer hybrid electrolytes integrating two different ceramic electrolytes, Ge4+ or Ti4+ phosphates, are prepared and their electrochemical behavior is analyzed for both lithium-ion and lithium-air batteries (LIB and LAB). Li(Al, Ge)2(PO4)3 can be a more effective lith...
MRS Bull. Nanda 43 10 740 2018 10.1557/mrs.2018.234 Frontiers of solid-state batteries
MRS Bull. Hao 43 10 775 2018 10.1557/mrs.2018.211 Architectural design and fabrication approaches for solid-state batteries
J. Phys. Chem. Lett. He 7 7 1267 2016 10.1021/acs.jpclett.6b00080 Lithium-air batteries with hybrid electrolytes
Energy Environ. Sci. Li 6 8 2302 2013 10.1039/c3ee40702k The pursuit of rechargeable solid-state Li-air batteries
Energy Environ. Sci. Yi 10 4 860 2017 10.1039/C6EE03499C Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries
Energy Environ. Sci. Zhang 11 8 1945 2018 10.1039/C8EE01053F New horizons for inorganic solid state ion conductors
J. Mater. Chem. Chen 6 25 11631 2018 10.1039/C8TA03358G Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes
Nat. Mater. Wang 14 1026 2015 10.1038/nmat4369 Design principles for solid-state lithium superionic conductors
Solid State Ionics Knauth 180 14-16 911 2009 10.1016/j.ssi.2009.03.022 Inorganic solid Li ion conductors: an overview
MRS Bull. Hallinan 43 10 759 2018 10.1557/mrs.2018.212 Polymer and composite electrolytes
J. Mater. Chem. Zhang 4 41 15823 2016 10.1039/C6TA07590H A ceramic/polymer composite solid electrolyte for sodium batteries
Mater. Horiz Chen 3 6 487 2016 10.1039/C6MH00218H The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons
Nat. Chem. Busche 8 426 2016 10.1038/nchem.2470 Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts
Electrochim. Acta MacFarlane 43 10-11 1333 1998 10.1016/S0013-4686(97)10039-1 Lithium-ion conducting ceramic/polyether composites
ACS Appl. Mater. Interfaces Zheng 10 4 4113 2018 10.1021/acsami.7b17301 New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes
ACS Appl. Mater. Interfaces Chamaani 9 39 33819 2017 10.1021/acsami.7b08448 Composite gel polymer electrolyte for improved cyclability in lithium-oxygen batteries
J. Power Sources Suk 334 154 2016 10.1016/j.jpowsour.2016.10.008 Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries
Mater. Technol. Feng 28 5 276 2013 10.1179/1753555713Y.0000000085 All solid state lithium ion rechargeable batteries using NASICON structured electrolyte
Solid State Ionics Bucharsky 274 77 2015 10.1016/j.ssi.2015.03.009 Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2-x(PO4)3
Ceram. Int. Kotobuki 39 4 4645 2013 10.1016/j.ceramint.2012.10.206 Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources
J. Eur. Ceram. Soc. Duluard 33 6 1145 2013 10.1016/j.jeurceramsoc.2012.08.005 Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
Flinn 1975 Engineering Materials and Their Applicaions
Russ. J. Appl. Chem. Gromov 69 3 385 1996 Ionic-conductivity of solid electrolytes based on Li1.3Al0.3Ti1.7(PO4)3
J. Am. Ceram. Soc. Ghosh 88 5 1349 2005 10.1111/j.1551-2916.2005.00306.x Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route
J. Electroceram. Traversa 5 3 261 2000 10.1023/A:1026543915883 Synthesis of NASICON with new compositions for electrochemical carbon dioxide sensors
Rahaman 2007 Sintering of Ceramics
J. Power Sources Keller 353 287 2017 10.1016/j.jpowsour.2017.04.014 Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI
ACS Energy Letters Yi 2 6 1378 2017 10.1021/acsenergylett.7b00292 Boosting the cycle life of Li-O2 batteries at elevated temperature by employing a hybrid polymer-ceramic solid electrolyte
RSC Adv. Zhao 6 95 92579 2016 10.1039/C6RA19415J Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries
Sustainable Energy Fuels Pardo 2 10 2325 2018 10.1039/C8SE00273H Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte?
Energy Environ. Sci. Chen 12 938 2019 10.1039/C8EE02617C Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework
Carbon Bui 130 94 2018 10.1016/j.carbon.2017.12.111 Carbon nanofiber@platinum by a coaxial electrospinning and their improved electrochemical performance as a Li-O2 battery cathode
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.